April  2016, 12(2): 471-486. doi: 10.3934/jimo.2016.12.471

$p$th Moment absolute exponential stability of stochastic control system with Markovian switching

1. 

Department of Mathematics, College of Science, China University of Petroleum, Beijing 102249, China, China, China, China

Received  September 2014 Revised  February 2015 Published  June 2015

In this paper we discuss the $p$th moment absolute exponential stability of stochastic control system with Markovian switching. We first give a new concept of $p$th moment absolute exponential stability, then we establish some theorems under different hypotheses to guarantee the system $p$th moment absolutely exponentially stable. These sufficient conditions in our theorems are algebraic criteria in terms of matrix inequalities, and we introduce an $M$-method with MATLAB to compute them. Finally, some examples are given to illustrate our results.
Citation: Yi Zhang, Yuyun Zhao, Tao Xu, Xin Liu. $p$th Moment absolute exponential stability of stochastic control system with Markovian switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 471-486. doi: 10.3934/jimo.2016.12.471
References:
[1]

G. K. Basak, A. Bisi and M. K. Ghosh, Stability of a random diffusion with linear drift,, Journal of Mathematical Analysis and Applications, 202 (1996), 604.  doi: 10.1006/jmaa.1996.0336.  Google Scholar

[2]

V. A. Brusin and V. A. Ugrinovskii, Stochastic stability of a class of nonlinear differential equations of Ito type,, Siberian Mathematical Journal, 28 (1987), 381.   Google Scholar

[3]

C. Jiang, K. L. Teo, R. Loxton and G. R. Duan, A neighboring extremal solution for an optimal switched impulsive control problem,, Journal of Industrial and Management Optimization, 8 (2012), 591.  doi: 10.3934/jimo.2012.8.591.  Google Scholar

[4]

R. E. Kalman, Lyapunov functions for the problem of Lur'e in automatic control,, Proceedings of the National Academy of Sciences of the United States of America, 49 (1963).  doi: 10.1073/pnas.49.2.201.  Google Scholar

[5]

D. G. Korenevskii, Algebraic criteria for absolute (relative to nonlinearity) stability of stochastic automatic control systems with nonlinear feedback,, Ukrainian Mathematical Journal, 40 (1988), 616.  doi: 10.1007/BF01057179.  Google Scholar

[6]

H. J. Kushner, Stochastic Stability and Control, volume 33 of Mathematics in Science and Engineering,, Academic Press, (1967).   Google Scholar

[7]

X. Liao, L. Q. Wang and P. Yu, Stability of Dynamical Systems,, Elsevier, (2007).  doi: 10.1016/S1574-6917(07)05001-5.  Google Scholar

[8]

X. Liao and P. Yu, Absolute Stability of Nonlinear Control Systems,, 2nd edition, (2008).  doi: 10.1007/978-1-4020-8482-9.  Google Scholar

[9]

D. Liberzon, Switching in Systems and Control,, Springer, (2003).  doi: 10.1007/978-1-4612-0017-8.  Google Scholar

[10]

M. R. Liberzon, Essays on the absolute stability theory,, Automation and Remote Control, 67 (2006), 1610.  doi: 10.1134/S0005117906100043.  Google Scholar

[11]

A. I. Lurie and V. N. Postnikov, On the theory of stability of control systems,, Applied Mathematics and Mechanics, 8 (1944), 246.   Google Scholar

[12]

A. K. Mahalanabis and S. Purkayastha, Frequency-domain criteria for stability of a class of nonlinear stochastic systems,, Automatic Control, 18 (1973), 266.   Google Scholar

[13]

L. Li, Y. Gao and H. Wang, Second order sufficient optimality conditions for hybrid control problems with state jump,, Journal of Industrial and Management Optimization, 11 (2015), 329.  doi: 10.3934/jimo.2015.11.329.  Google Scholar

[14]

X. Mao, Stability of stochastic differential equations with Markovian switching,, Stochastic Processes and Their Applications, 79 (1999), 45.  doi: 10.1016/S0304-4149(98)00070-2.  Google Scholar

[15]

X. Mao, Asymptotic stability for stochastic differential equations with Markovian switching,, WSEAS Trans. Circuits, 1 (2002), 68.   Google Scholar

[16]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching,, Imperial College Press, (2006).  doi: 10.1142/p473.  Google Scholar

[17]

X. Mao, Stochastic Differential Equations and Applications,, Elsevier, (2007).  doi: 10.1533/9780857099402.  Google Scholar

[18]

P. V. Pakshin and V. A. Ugrinovskii, Stochastic problems of absolute stability,, Automation and Remote Control, 67 (2006), 1811.  doi: 10.1134/S0005117906110051.  Google Scholar

[19]

V. M. Popov, Absolute stability of nonlinear systems of automatic control,, Automation and Remote Control, 22 (1962), 857.   Google Scholar

[20]

Z. Sun and S. Ge, Stability Theory of Switched Dynamical Systems,, Springer, (2011).  doi: 10.1007/978-0-85729-256-8.  Google Scholar

[21]

A. J. Van Der Schaft and J. M. Schumacher, An Introduction to Hybrid Dynamical Systems,, Springer, (2000).  doi: 10.1007/BFb0109998.  Google Scholar

[22]

H. Xie, Theory and Application of Absolute Stability,, Science Press, (1986).   Google Scholar

[23]

H. Xu and K. L. Teo, Exponential stability with-gain condition of nonlinear impulsive switched systems,, Automatic Control, 55 (2010), 2429.  doi: 10.1109/TAC.2010.2060173.  Google Scholar

[24]

H. Xu, K. L. Teo and W. Gui, Necessary and sufficient conditions for stability of impulsive switched linear systems,, Discrete and Continuous Dynamical Systems-Series B, 16 (2011), 1185.  doi: 10.3934/dcdsb.2011.16.1185.  Google Scholar

[25]

X. Xie, H. Xu and R. Zhang, Exponential stabilization of impulsive switched systems with time delays using guaranteed cost control,, Abstract and Applied Analysis, 2014 (2014).  doi: 10.1155/2014/126836.  Google Scholar

[26]

V. A. Yakubovich, The solution of certain matrix inequalities in automatic control theory,, Soviet Math. Dokl, 3 (1962), 620.   Google Scholar

[27]

Y. Zhang, M. Wang, H. Xu and K. L. Teo, Global stabilization of switched control systems with time delay,, Nonlinear Analysis: Hybrid Systems, 14 (2014), 86.  doi: 10.1016/j.nahs.2014.05.004.  Google Scholar

[28]

Y. Zhang, Y. Zhao, H. Xu, H. Shi and K. L. Teo, On boundedness and attractiveness of nonlinear switched delay systems,, In Abstract and Applied Analysis, 2013 (2013).   Google Scholar

show all references

References:
[1]

G. K. Basak, A. Bisi and M. K. Ghosh, Stability of a random diffusion with linear drift,, Journal of Mathematical Analysis and Applications, 202 (1996), 604.  doi: 10.1006/jmaa.1996.0336.  Google Scholar

[2]

V. A. Brusin and V. A. Ugrinovskii, Stochastic stability of a class of nonlinear differential equations of Ito type,, Siberian Mathematical Journal, 28 (1987), 381.   Google Scholar

[3]

C. Jiang, K. L. Teo, R. Loxton and G. R. Duan, A neighboring extremal solution for an optimal switched impulsive control problem,, Journal of Industrial and Management Optimization, 8 (2012), 591.  doi: 10.3934/jimo.2012.8.591.  Google Scholar

[4]

R. E. Kalman, Lyapunov functions for the problem of Lur'e in automatic control,, Proceedings of the National Academy of Sciences of the United States of America, 49 (1963).  doi: 10.1073/pnas.49.2.201.  Google Scholar

[5]

D. G. Korenevskii, Algebraic criteria for absolute (relative to nonlinearity) stability of stochastic automatic control systems with nonlinear feedback,, Ukrainian Mathematical Journal, 40 (1988), 616.  doi: 10.1007/BF01057179.  Google Scholar

[6]

H. J. Kushner, Stochastic Stability and Control, volume 33 of Mathematics in Science and Engineering,, Academic Press, (1967).   Google Scholar

[7]

X. Liao, L. Q. Wang and P. Yu, Stability of Dynamical Systems,, Elsevier, (2007).  doi: 10.1016/S1574-6917(07)05001-5.  Google Scholar

[8]

X. Liao and P. Yu, Absolute Stability of Nonlinear Control Systems,, 2nd edition, (2008).  doi: 10.1007/978-1-4020-8482-9.  Google Scholar

[9]

D. Liberzon, Switching in Systems and Control,, Springer, (2003).  doi: 10.1007/978-1-4612-0017-8.  Google Scholar

[10]

M. R. Liberzon, Essays on the absolute stability theory,, Automation and Remote Control, 67 (2006), 1610.  doi: 10.1134/S0005117906100043.  Google Scholar

[11]

A. I. Lurie and V. N. Postnikov, On the theory of stability of control systems,, Applied Mathematics and Mechanics, 8 (1944), 246.   Google Scholar

[12]

A. K. Mahalanabis and S. Purkayastha, Frequency-domain criteria for stability of a class of nonlinear stochastic systems,, Automatic Control, 18 (1973), 266.   Google Scholar

[13]

L. Li, Y. Gao and H. Wang, Second order sufficient optimality conditions for hybrid control problems with state jump,, Journal of Industrial and Management Optimization, 11 (2015), 329.  doi: 10.3934/jimo.2015.11.329.  Google Scholar

[14]

X. Mao, Stability of stochastic differential equations with Markovian switching,, Stochastic Processes and Their Applications, 79 (1999), 45.  doi: 10.1016/S0304-4149(98)00070-2.  Google Scholar

[15]

X. Mao, Asymptotic stability for stochastic differential equations with Markovian switching,, WSEAS Trans. Circuits, 1 (2002), 68.   Google Scholar

[16]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching,, Imperial College Press, (2006).  doi: 10.1142/p473.  Google Scholar

[17]

X. Mao, Stochastic Differential Equations and Applications,, Elsevier, (2007).  doi: 10.1533/9780857099402.  Google Scholar

[18]

P. V. Pakshin and V. A. Ugrinovskii, Stochastic problems of absolute stability,, Automation and Remote Control, 67 (2006), 1811.  doi: 10.1134/S0005117906110051.  Google Scholar

[19]

V. M. Popov, Absolute stability of nonlinear systems of automatic control,, Automation and Remote Control, 22 (1962), 857.   Google Scholar

[20]

Z. Sun and S. Ge, Stability Theory of Switched Dynamical Systems,, Springer, (2011).  doi: 10.1007/978-0-85729-256-8.  Google Scholar

[21]

A. J. Van Der Schaft and J. M. Schumacher, An Introduction to Hybrid Dynamical Systems,, Springer, (2000).  doi: 10.1007/BFb0109998.  Google Scholar

[22]

H. Xie, Theory and Application of Absolute Stability,, Science Press, (1986).   Google Scholar

[23]

H. Xu and K. L. Teo, Exponential stability with-gain condition of nonlinear impulsive switched systems,, Automatic Control, 55 (2010), 2429.  doi: 10.1109/TAC.2010.2060173.  Google Scholar

[24]

H. Xu, K. L. Teo and W. Gui, Necessary and sufficient conditions for stability of impulsive switched linear systems,, Discrete and Continuous Dynamical Systems-Series B, 16 (2011), 1185.  doi: 10.3934/dcdsb.2011.16.1185.  Google Scholar

[25]

X. Xie, H. Xu and R. Zhang, Exponential stabilization of impulsive switched systems with time delays using guaranteed cost control,, Abstract and Applied Analysis, 2014 (2014).  doi: 10.1155/2014/126836.  Google Scholar

[26]

V. A. Yakubovich, The solution of certain matrix inequalities in automatic control theory,, Soviet Math. Dokl, 3 (1962), 620.   Google Scholar

[27]

Y. Zhang, M. Wang, H. Xu and K. L. Teo, Global stabilization of switched control systems with time delay,, Nonlinear Analysis: Hybrid Systems, 14 (2014), 86.  doi: 10.1016/j.nahs.2014.05.004.  Google Scholar

[28]

Y. Zhang, Y. Zhao, H. Xu, H. Shi and K. L. Teo, On boundedness and attractiveness of nonlinear switched delay systems,, In Abstract and Applied Analysis, 2013 (2013).   Google Scholar

[1]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[2]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[3]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[4]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[5]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[6]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

[7]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[8]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[9]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[10]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[11]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[12]

Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208

[13]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[14]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[15]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[16]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[17]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[18]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[19]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[20]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]