-
Previous Article
An $(s,S)$ inventory model with level-dependent $G/M/1$-Type structure
- JIMO Home
- This Issue
-
Next Article
Bi-level multiple mode resource-constrained project scheduling problems under hybrid uncertainty
A global optimal zero-forcing Beamformer design with signed power-of-two coefficients
1. | Department of Mathematics and Statistics, Curtin University, GPO Box U1987, Perth, WA 6845, Australia, Australia |
2. | School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia |
References:
[1] |
G. Caire and S. Shamai, On the achievable throughput of multiatenna Gaussian broadcast channel,, IEEE Trans. Inf. Theory., 49 (2003), 1691.
doi: 10.1109/TIT.2003.813523. |
[2] |
H. H. Dam and A. Cantoni, Interior point method for optimum zero-forcing beamforming with per-antenna power constraints and optimal step size,, Signal Process., 106 (2015), 10.
doi: 10.1016/j.sigpro.2014.06.028. |
[3] |
H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, FIR variable digital filter with signed power-of-two coefficients,, IEEE Trans. Circuits Syst., 54 (2007), 1348.
doi: 10.1109/TCSI.2007.897775. |
[4] |
Z. G. Feng and K. L. Teo, A discrete filled function method for the design of FIR filters with signed-powers-of-two coefficients,, IEEE Trans. Signal Process., 56 (2008), 134.
doi: 10.1109/TSP.2007.901164. |
[5] |
K. Karakayali, R. Yates, G. Foschini and R. Valenzuela, Optimal zero-forcing beamforming with per-antenna power constraints,, IEEE International Symposium on Information Theory, (2007), 101. Google Scholar |
[6] |
S. R. Lee, J. S. Kim, S. H. Moon, H. B. Kong and I. Lee, Zero-forcing beamforming in multiuser MISO downlink systems under per-antenna power constraint and equal-rate metric,, IEEE Trans. Wireless Commun., 12 (2013), 228.
doi: 10.1109/TWC.2012.120312.120332. |
[7] |
B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A primal-dual interior point method for optimal zero-forcing beamformer design under per-antenna power constraints,, Optim. Lett., 8 (2014), 1829.
doi: 10.1007/s11590-013-0673-y. |
[8] |
B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A first-order optimal zero-forcing beamformer design for multiuser MIMO systems via a regularized dual accelerated gradient method,, IEEE Commun. Lett., 19 (2015), 195.
doi: 10.1109/LCOMM.2014.2381245. |
[9] |
B. Li, H. H. Dam, A. Cantoni and K. L. Teo, Some interesting properties for zero-forcing beamforming under per-antenna power constraints in rural areas,, J. Glob. Optim., (): 10898.
doi: 10.1007/s10898-014-0237-4. |
[10] |
B. Li, C. Z. Wu, H. H. Dam, A. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method,, IEEE Trans. Signal Process., (). Google Scholar |
[11] |
H. H. Dam, A. Cantoni and B. Li, A fast low complexity method for optimal zero-forcing beamformer MU-MIMO system,, IEEE Signal Process. Lett., 22 (2015), 1443. Google Scholar |
[12] |
B. Li, H. H. Dam, K. L. Teo and A. Cantoni, A Low Complexity Optimization Algorithm for Zero-Forcing Precoding under Per-antenna Power Constraints,, The 40th IEEE International Conference on Acoustics, (2015). Google Scholar |
[13] |
B. Li, H. H. Dam, K. L. Teo and A. Cantoni, A Survey on Zero-Forcing Beamformer Design under Per-antenna Power Constraints for Multiuser MIMO Systems,, 2015 IEEE International Conference on Digital Signal Processing, (2015). Google Scholar |
[14] |
D. Li, J. Song and Y. C. Lim, A polynomial-time alogorithm for designing digital filters with power-of-two coefficients,, Proc. IEEE Int. Symp. Circuits Syst., (1993), 84. Google Scholar |
[15] |
Y. C. Lim, Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude,, IEEE Trans. Circuits Syst., 37 (1990), 1480.
doi: 10.1109/31.101268. |
[16] |
Y. C. Lim and S. R. Parker, FIR filter design over a discrete powers-of-two coefficients space,, IEEE Trans. Acoust. Speech Signal Process., 31 (1983), 583. Google Scholar |
[17] |
H. Lin, Y. Wang and X. Wang, An auxiliary function method for global minimization in integer programming,, Math. Probl. Eng., 2011 (2011), 1.
doi: 10.1155/2011/402437. |
[18] |
Y. Liu, An exterior point linear programming method based on inclusive nornal cone,, Journal of Industrial and Management Optimization, 6 (2010), 825.
doi: 10.3934/jimo.2010.6.825. |
[19] |
J. Quan, Z. Wu and G. Li, Global optimality conditions for some classes of polynomial integer programming problems,, Journal of Industrial and Management Optimization, 7 (2011), 67.
doi: 10.3934/jimo.2011.7.67. |
[20] |
A. Wiesel, Y. C. Eldar and S. Shamai, Linear precoding via conic optimizaiton for fixed MIMO receivers,, IEEE Trans. Signal Process., 54 (2006), 161. Google Scholar |
[21] |
A. Wiesel, Y. C. Eldar and S. Shamai, Zero-forcing precoding and generalized inverses,, IEEE Trans. Signal Process., 56 (2008), 4409.
doi: 10.1109/TSP.2008.924638. |
[22] |
C. J. Yu, K. L. Teo and H. H. Dam, Design of allpass variable fractional delay filter with signed powers-of-two coefficients,, Signal Process., 95 (2014), 32.
doi: 10.1016/j.sigpro.2013.08.005. |
show all references
References:
[1] |
G. Caire and S. Shamai, On the achievable throughput of multiatenna Gaussian broadcast channel,, IEEE Trans. Inf. Theory., 49 (2003), 1691.
doi: 10.1109/TIT.2003.813523. |
[2] |
H. H. Dam and A. Cantoni, Interior point method for optimum zero-forcing beamforming with per-antenna power constraints and optimal step size,, Signal Process., 106 (2015), 10.
doi: 10.1016/j.sigpro.2014.06.028. |
[3] |
H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, FIR variable digital filter with signed power-of-two coefficients,, IEEE Trans. Circuits Syst., 54 (2007), 1348.
doi: 10.1109/TCSI.2007.897775. |
[4] |
Z. G. Feng and K. L. Teo, A discrete filled function method for the design of FIR filters with signed-powers-of-two coefficients,, IEEE Trans. Signal Process., 56 (2008), 134.
doi: 10.1109/TSP.2007.901164. |
[5] |
K. Karakayali, R. Yates, G. Foschini and R. Valenzuela, Optimal zero-forcing beamforming with per-antenna power constraints,, IEEE International Symposium on Information Theory, (2007), 101. Google Scholar |
[6] |
S. R. Lee, J. S. Kim, S. H. Moon, H. B. Kong and I. Lee, Zero-forcing beamforming in multiuser MISO downlink systems under per-antenna power constraint and equal-rate metric,, IEEE Trans. Wireless Commun., 12 (2013), 228.
doi: 10.1109/TWC.2012.120312.120332. |
[7] |
B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A primal-dual interior point method for optimal zero-forcing beamformer design under per-antenna power constraints,, Optim. Lett., 8 (2014), 1829.
doi: 10.1007/s11590-013-0673-y. |
[8] |
B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A first-order optimal zero-forcing beamformer design for multiuser MIMO systems via a regularized dual accelerated gradient method,, IEEE Commun. Lett., 19 (2015), 195.
doi: 10.1109/LCOMM.2014.2381245. |
[9] |
B. Li, H. H. Dam, A. Cantoni and K. L. Teo, Some interesting properties for zero-forcing beamforming under per-antenna power constraints in rural areas,, J. Glob. Optim., (): 10898.
doi: 10.1007/s10898-014-0237-4. |
[10] |
B. Li, C. Z. Wu, H. H. Dam, A. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method,, IEEE Trans. Signal Process., (). Google Scholar |
[11] |
H. H. Dam, A. Cantoni and B. Li, A fast low complexity method for optimal zero-forcing beamformer MU-MIMO system,, IEEE Signal Process. Lett., 22 (2015), 1443. Google Scholar |
[12] |
B. Li, H. H. Dam, K. L. Teo and A. Cantoni, A Low Complexity Optimization Algorithm for Zero-Forcing Precoding under Per-antenna Power Constraints,, The 40th IEEE International Conference on Acoustics, (2015). Google Scholar |
[13] |
B. Li, H. H. Dam, K. L. Teo and A. Cantoni, A Survey on Zero-Forcing Beamformer Design under Per-antenna Power Constraints for Multiuser MIMO Systems,, 2015 IEEE International Conference on Digital Signal Processing, (2015). Google Scholar |
[14] |
D. Li, J. Song and Y. C. Lim, A polynomial-time alogorithm for designing digital filters with power-of-two coefficients,, Proc. IEEE Int. Symp. Circuits Syst., (1993), 84. Google Scholar |
[15] |
Y. C. Lim, Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude,, IEEE Trans. Circuits Syst., 37 (1990), 1480.
doi: 10.1109/31.101268. |
[16] |
Y. C. Lim and S. R. Parker, FIR filter design over a discrete powers-of-two coefficients space,, IEEE Trans. Acoust. Speech Signal Process., 31 (1983), 583. Google Scholar |
[17] |
H. Lin, Y. Wang and X. Wang, An auxiliary function method for global minimization in integer programming,, Math. Probl. Eng., 2011 (2011), 1.
doi: 10.1155/2011/402437. |
[18] |
Y. Liu, An exterior point linear programming method based on inclusive nornal cone,, Journal of Industrial and Management Optimization, 6 (2010), 825.
doi: 10.3934/jimo.2010.6.825. |
[19] |
J. Quan, Z. Wu and G. Li, Global optimality conditions for some classes of polynomial integer programming problems,, Journal of Industrial and Management Optimization, 7 (2011), 67.
doi: 10.3934/jimo.2011.7.67. |
[20] |
A. Wiesel, Y. C. Eldar and S. Shamai, Linear precoding via conic optimizaiton for fixed MIMO receivers,, IEEE Trans. Signal Process., 54 (2006), 161. Google Scholar |
[21] |
A. Wiesel, Y. C. Eldar and S. Shamai, Zero-forcing precoding and generalized inverses,, IEEE Trans. Signal Process., 56 (2008), 4409.
doi: 10.1109/TSP.2008.924638. |
[22] |
C. J. Yu, K. L. Teo and H. H. Dam, Design of allpass variable fractional delay filter with signed powers-of-two coefficients,, Signal Process., 95 (2014), 32.
doi: 10.1016/j.sigpro.2013.08.005. |
[1] |
Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983 |
[2] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[3] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[4] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[5] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[6] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[7] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[8] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[9] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[10] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[11] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[12] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[13] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[14] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[15] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[16] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[17] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[18] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[19] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[20] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]