April  2016, 12(2): 595-607. doi: 10.3934/jimo.2016.12.595

A global optimal zero-forcing Beamformer design with signed power-of-two coefficients

1. 

Department of Mathematics and Statistics, Curtin University, GPO Box U1987, Perth, WA 6845, Australia, Australia

2. 

School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

Received  November 2014 Revised  March 2015 Published  June 2015

In this paper, we investigate a zero-forcing beamformer design with signed power-of-two coefficients for rural applications. In this design, the minimum user information rate is taken as the performance measure, while a practical system design constraint, the per-antenna power constraint, is imposed. The problem is formulated as a constrained zero-one integer programming problem. Based on a transform between two different integer spaces, the problem is transformed into an equivalent constrained integer programming problem. A global optimal two-stage design is proposed for solving the problem. In the first stage, a polynomial time quantization method is applied to obtain an initial design. In the second stage, an auxiliary function method is used to find the global optimal design. For illustration, numerical examples under several different scenarios are studied and the results are compared with those obtained by an existing method. Furthermore, the impact of the mutual interference terms in the performance measure is also studied.
Citation: Bin Li, Hai Huyen Dam, Antonio Cantoni. A global optimal zero-forcing Beamformer design with signed power-of-two coefficients. Journal of Industrial and Management Optimization, 2016, 12 (2) : 595-607. doi: 10.3934/jimo.2016.12.595
References:
[1]

G. Caire and S. Shamai, On the achievable throughput of multiatenna Gaussian broadcast channel, IEEE Trans. Inf. Theory., 49 (2003), 1691-1706. doi: 10.1109/TIT.2003.813523.

[2]

H. H. Dam and A. Cantoni, Interior point method for optimum zero-forcing beamforming with per-antenna power constraints and optimal step size, Signal Process., 106 (2015), 10-14. doi: 10.1016/j.sigpro.2014.06.028.

[3]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, FIR variable digital filter with signed power-of-two coefficients, IEEE Trans. Circuits Syst., 54 (2007), 1348-1356. doi: 10.1109/TCSI.2007.897775.

[4]

Z. G. Feng and K. L. Teo, A discrete filled function method for the design of FIR filters with signed-powers-of-two coefficients, IEEE Trans. Signal Process., 56 (2008), 134-138. doi: 10.1109/TSP.2007.901164.

[5]

K. Karakayali, R. Yates, G. Foschini and R. Valenzuela, Optimal zero-forcing beamforming with per-antenna power constraints, IEEE International Symposium on Information Theory, Nice, France, (2007), 101-105.

[6]

S. R. Lee, J. S. Kim, S. H. Moon, H. B. Kong and I. Lee, Zero-forcing beamforming in multiuser MISO downlink systems under per-antenna power constraint and equal-rate metric, IEEE Trans. Wireless Commun., 12 (2013), 228-236. doi: 10.1109/TWC.2012.120312.120332.

[7]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A primal-dual interior point method for optimal zero-forcing beamformer design under per-antenna power constraints, Optim. Lett., 8 (2014), 1829-1843. doi: 10.1007/s11590-013-0673-y.

[8]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A first-order optimal zero-forcing beamformer design for multiuser MIMO systems via a regularized dual accelerated gradient method, IEEE Commun. Lett., 19 (2015), 195-198. doi: 10.1109/LCOMM.2014.2381245.

[9]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, Some interesting properties for zero-forcing beamforming under per-antenna power constraints in rural areas, J. Glob. Optim., 10.1007/s10898-014-0237-4. doi: 10.1007/s10898-014-0237-4.

[10]

B. Li, C. Z. Wu, H. H. Dam, A. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method, IEEE Trans. Signal Process., under review.

[11]

H. H. Dam, A. Cantoni and B. Li, A fast low complexity method for optimal zero-forcing beamformer MU-MIMO system, IEEE Signal Process. Lett., 22 (2015), 1443-1447.

[12]

B. Li, H. H. Dam, K. L. Teo and A. Cantoni, A Low Complexity Optimization Algorithm for Zero-Forcing Precoding under Per-antenna Power Constraints, The 40th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, (2015), to appear.

[13]

B. Li, H. H. Dam, K. L. Teo and A. Cantoni, A Survey on Zero-Forcing Beamformer Design under Per-antenna Power Constraints for Multiuser MIMO Systems, 2015 IEEE International Conference on Digital Signal Processing, Singapore, (2015), to appear.

[14]

D. Li, J. Song and Y. C. Lim, A polynomial-time alogorithm for designing digital filters with power-of-two coefficients, Proc. IEEE Int. Symp. Circuits Syst., (1993), 84-87.

[15]

Y. C. Lim, Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude, IEEE Trans. Circuits Syst., 37 (1990), 1480-1486. doi: 10.1109/31.101268.

[16]

Y. C. Lim and S. R. Parker, FIR filter design over a discrete powers-of-two coefficients space, IEEE Trans. Acoust. Speech Signal Process., 31 (1983), 583-591.

[17]

H. Lin, Y. Wang and X. Wang, An auxiliary function method for global minimization in integer programming, Math. Probl. Eng., 2011 (2011), 1-13. doi: 10.1155/2011/402437.

[18]

Y. Liu, An exterior point linear programming method based on inclusive nornal cone, Journal of Industrial and Management Optimization, 6 (2010), 825-846. doi: 10.3934/jimo.2010.6.825.

[19]

J. Quan, Z. Wu and G. Li, Global optimality conditions for some classes of polynomial integer programming problems, Journal of Industrial and Management Optimization, 7 (2011), 67-78. doi: 10.3934/jimo.2011.7.67.

[20]

A. Wiesel, Y. C. Eldar and S. Shamai, Linear precoding via conic optimizaiton for fixed MIMO receivers, IEEE Trans. Signal Process., 54 (2006), 161-176.

[21]

A. Wiesel, Y. C. Eldar and S. Shamai, Zero-forcing precoding and generalized inverses, IEEE Trans. Signal Process., 56 (2008), 4409-4418. doi: 10.1109/TSP.2008.924638.

[22]

C. J. Yu, K. L. Teo and H. H. Dam, Design of allpass variable fractional delay filter with signed powers-of-two coefficients, Signal Process., 95 (2014), 32-42. doi: 10.1016/j.sigpro.2013.08.005.

show all references

References:
[1]

G. Caire and S. Shamai, On the achievable throughput of multiatenna Gaussian broadcast channel, IEEE Trans. Inf. Theory., 49 (2003), 1691-1706. doi: 10.1109/TIT.2003.813523.

[2]

H. H. Dam and A. Cantoni, Interior point method for optimum zero-forcing beamforming with per-antenna power constraints and optimal step size, Signal Process., 106 (2015), 10-14. doi: 10.1016/j.sigpro.2014.06.028.

[3]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, FIR variable digital filter with signed power-of-two coefficients, IEEE Trans. Circuits Syst., 54 (2007), 1348-1356. doi: 10.1109/TCSI.2007.897775.

[4]

Z. G. Feng and K. L. Teo, A discrete filled function method for the design of FIR filters with signed-powers-of-two coefficients, IEEE Trans. Signal Process., 56 (2008), 134-138. doi: 10.1109/TSP.2007.901164.

[5]

K. Karakayali, R. Yates, G. Foschini and R. Valenzuela, Optimal zero-forcing beamforming with per-antenna power constraints, IEEE International Symposium on Information Theory, Nice, France, (2007), 101-105.

[6]

S. R. Lee, J. S. Kim, S. H. Moon, H. B. Kong and I. Lee, Zero-forcing beamforming in multiuser MISO downlink systems under per-antenna power constraint and equal-rate metric, IEEE Trans. Wireless Commun., 12 (2013), 228-236. doi: 10.1109/TWC.2012.120312.120332.

[7]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A primal-dual interior point method for optimal zero-forcing beamformer design under per-antenna power constraints, Optim. Lett., 8 (2014), 1829-1843. doi: 10.1007/s11590-013-0673-y.

[8]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A first-order optimal zero-forcing beamformer design for multiuser MIMO systems via a regularized dual accelerated gradient method, IEEE Commun. Lett., 19 (2015), 195-198. doi: 10.1109/LCOMM.2014.2381245.

[9]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, Some interesting properties for zero-forcing beamforming under per-antenna power constraints in rural areas, J. Glob. Optim., 10.1007/s10898-014-0237-4. doi: 10.1007/s10898-014-0237-4.

[10]

B. Li, C. Z. Wu, H. H. Dam, A. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method, IEEE Trans. Signal Process., under review.

[11]

H. H. Dam, A. Cantoni and B. Li, A fast low complexity method for optimal zero-forcing beamformer MU-MIMO system, IEEE Signal Process. Lett., 22 (2015), 1443-1447.

[12]

B. Li, H. H. Dam, K. L. Teo and A. Cantoni, A Low Complexity Optimization Algorithm for Zero-Forcing Precoding under Per-antenna Power Constraints, The 40th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, (2015), to appear.

[13]

B. Li, H. H. Dam, K. L. Teo and A. Cantoni, A Survey on Zero-Forcing Beamformer Design under Per-antenna Power Constraints for Multiuser MIMO Systems, 2015 IEEE International Conference on Digital Signal Processing, Singapore, (2015), to appear.

[14]

D. Li, J. Song and Y. C. Lim, A polynomial-time alogorithm for designing digital filters with power-of-two coefficients, Proc. IEEE Int. Symp. Circuits Syst., (1993), 84-87.

[15]

Y. C. Lim, Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude, IEEE Trans. Circuits Syst., 37 (1990), 1480-1486. doi: 10.1109/31.101268.

[16]

Y. C. Lim and S. R. Parker, FIR filter design over a discrete powers-of-two coefficients space, IEEE Trans. Acoust. Speech Signal Process., 31 (1983), 583-591.

[17]

H. Lin, Y. Wang and X. Wang, An auxiliary function method for global minimization in integer programming, Math. Probl. Eng., 2011 (2011), 1-13. doi: 10.1155/2011/402437.

[18]

Y. Liu, An exterior point linear programming method based on inclusive nornal cone, Journal of Industrial and Management Optimization, 6 (2010), 825-846. doi: 10.3934/jimo.2010.6.825.

[19]

J. Quan, Z. Wu and G. Li, Global optimality conditions for some classes of polynomial integer programming problems, Journal of Industrial and Management Optimization, 7 (2011), 67-78. doi: 10.3934/jimo.2011.7.67.

[20]

A. Wiesel, Y. C. Eldar and S. Shamai, Linear precoding via conic optimizaiton for fixed MIMO receivers, IEEE Trans. Signal Process., 54 (2006), 161-176.

[21]

A. Wiesel, Y. C. Eldar and S. Shamai, Zero-forcing precoding and generalized inverses, IEEE Trans. Signal Process., 56 (2008), 4409-4418. doi: 10.1109/TSP.2008.924638.

[22]

C. J. Yu, K. L. Teo and H. H. Dam, Design of allpass variable fractional delay filter with signed powers-of-two coefficients, Signal Process., 95 (2014), 32-42. doi: 10.1016/j.sigpro.2013.08.005.

[1]

Hanyu Cao, Meiying Zhang, Huanxi Cai, Wei Gong, Min Su, Bin Li. A zero-forcing beamforming based time switching protocol for wireless powered internet of things system. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2913-2922. doi: 10.3934/jimo.2019086

[2]

Bin Li, Hai Huyen Dam, Antonio Cantoni. A low-complexity zero-forcing Beamformer design for multiuser MIMO systems via a dual gradient method. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 297-304. doi: 10.3934/naco.2016012

[3]

Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 353-362. doi: 10.3934/jimo.2008.4.353

[4]

Zhiyou Wu, Fusheng Bai, Guoquan Li, Yongjian Yang. A new auxiliary function method for systems of nonlinear equations. Journal of Industrial and Management Optimization, 2015, 11 (2) : 345-364. doi: 10.3934/jimo.2015.11.345

[5]

Miao Yu, Haoyang Lu, Weipeng Shang. A new iterative identification method for damping control of power system in multi-interference. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1773-1790. doi: 10.3934/dcdss.2020104

[6]

Xiaojiao Tong, Felix F. Wu, Yongping Zhang, Zheng Yan, Yixin Ni. A semismooth Newton method for solving optimal power flow. Journal of Industrial and Management Optimization, 2007, 3 (3) : 553-567. doi: 10.3934/jimo.2007.3.553

[7]

Haode Yan, Zhen Li, Zhitian Song, Rongquan Feng. Two classes of power mappings with boomerang uniformity 2. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022046

[8]

Ming Chen, Chongchao Huang. A power penalty method for the general traffic assignment problem with elastic demand. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1019-1030. doi: 10.3934/jimo.2014.10.1019

[9]

Ming Chen, Chongchao Huang. A power penalty method for a class of linearly constrained variational inequality. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1381-1396. doi: 10.3934/jimo.2018012

[10]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial and Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[11]

Liqun Qi, Zheng yan, Hongxia Yin. Semismooth reformulation and Newton's method for the security region problem of power systems. Journal of Industrial and Management Optimization, 2008, 4 (1) : 143-153. doi: 10.3934/jimo.2008.4.143

[12]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1261-1274. doi: 10.3934/jimo.2021018

[13]

Zhiguo Feng, Ka-Fai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial and Management Optimization, 2014, 10 (2) : 557-566. doi: 10.3934/jimo.2014.10.557

[14]

Hongming Yang, C. Y. Chung, Xiaojiao Tong, Pingping Bing. Research on dynamic equilibrium of power market with complex network constraints based on nonlinear complementarity function. Journal of Industrial and Management Optimization, 2008, 4 (3) : 617-630. doi: 10.3934/jimo.2008.4.617

[15]

René Henrion, Christian Küchler, Werner Römisch. Discrepancy distances and scenario reduction in two-stage stochastic mixed-integer programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 363-384. doi: 10.3934/jimo.2008.4.363

[16]

Mahdi Roozbeh, Saman Babaie–Kafaki, Zohre Aminifard. Two penalized mixed–integer nonlinear programming approaches to tackle multicollinearity and outliers effects in linear regression models. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3475-3491. doi: 10.3934/jimo.2020128

[17]

Cheng Ma, Xun Li, Ka-Fai Cedric Yiu, Yongjian Yang, Liansheng Zhang. On an exact penalty function method for semi-infinite programming problems. Journal of Industrial and Management Optimization, 2012, 8 (3) : 705-726. doi: 10.3934/jimo.2012.8.705

[18]

Louis Caccetta, Syarifah Z. Nordin. Mixed integer programming model for scheduling in unrelated parallel processor system with priority consideration. Numerical Algebra, Control and Optimization, 2014, 4 (2) : 115-132. doi: 10.3934/naco.2014.4.115

[19]

Sung-Hwa Lim, Se Won Lee, Byoung-Hoon Lee, Seongil Lee, Ho Woo Lee. Stochastic method for power-aware checkpoint intervals in wireless environments: Theory and application. Journal of Industrial and Management Optimization, 2012, 8 (4) : 969-986. doi: 10.3934/jimo.2012.8.969

[20]

Joseph Bayara, André Conseibo, Artibano Micali, Moussa Ouattara. Derivations in power-associative algebras. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1359-1370. doi: 10.3934/dcdss.2011.4.1359

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (184)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]