April  2016, 12(2): 595-607. doi: 10.3934/jimo.2016.12.595

A global optimal zero-forcing Beamformer design with signed power-of-two coefficients

1. 

Department of Mathematics and Statistics, Curtin University, GPO Box U1987, Perth, WA 6845, Australia, Australia

2. 

School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

Received  November 2014 Revised  March 2015 Published  June 2015

In this paper, we investigate a zero-forcing beamformer design with signed power-of-two coefficients for rural applications. In this design, the minimum user information rate is taken as the performance measure, while a practical system design constraint, the per-antenna power constraint, is imposed. The problem is formulated as a constrained zero-one integer programming problem. Based on a transform between two different integer spaces, the problem is transformed into an equivalent constrained integer programming problem. A global optimal two-stage design is proposed for solving the problem. In the first stage, a polynomial time quantization method is applied to obtain an initial design. In the second stage, an auxiliary function method is used to find the global optimal design. For illustration, numerical examples under several different scenarios are studied and the results are compared with those obtained by an existing method. Furthermore, the impact of the mutual interference terms in the performance measure is also studied.
Citation: Bin Li, Hai Huyen Dam, Antonio Cantoni. A global optimal zero-forcing Beamformer design with signed power-of-two coefficients. Journal of Industrial & Management Optimization, 2016, 12 (2) : 595-607. doi: 10.3934/jimo.2016.12.595
References:
[1]

G. Caire and S. Shamai, On the achievable throughput of multiatenna Gaussian broadcast channel,, IEEE Trans. Inf. Theory., 49 (2003), 1691.  doi: 10.1109/TIT.2003.813523.  Google Scholar

[2]

H. H. Dam and A. Cantoni, Interior point method for optimum zero-forcing beamforming with per-antenna power constraints and optimal step size,, Signal Process., 106 (2015), 10.  doi: 10.1016/j.sigpro.2014.06.028.  Google Scholar

[3]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, FIR variable digital filter with signed power-of-two coefficients,, IEEE Trans. Circuits Syst., 54 (2007), 1348.  doi: 10.1109/TCSI.2007.897775.  Google Scholar

[4]

Z. G. Feng and K. L. Teo, A discrete filled function method for the design of FIR filters with signed-powers-of-two coefficients,, IEEE Trans. Signal Process., 56 (2008), 134.  doi: 10.1109/TSP.2007.901164.  Google Scholar

[5]

K. Karakayali, R. Yates, G. Foschini and R. Valenzuela, Optimal zero-forcing beamforming with per-antenna power constraints,, IEEE International Symposium on Information Theory, (2007), 101.   Google Scholar

[6]

S. R. Lee, J. S. Kim, S. H. Moon, H. B. Kong and I. Lee, Zero-forcing beamforming in multiuser MISO downlink systems under per-antenna power constraint and equal-rate metric,, IEEE Trans. Wireless Commun., 12 (2013), 228.  doi: 10.1109/TWC.2012.120312.120332.  Google Scholar

[7]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A primal-dual interior point method for optimal zero-forcing beamformer design under per-antenna power constraints,, Optim. Lett., 8 (2014), 1829.  doi: 10.1007/s11590-013-0673-y.  Google Scholar

[8]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A first-order optimal zero-forcing beamformer design for multiuser MIMO systems via a regularized dual accelerated gradient method,, IEEE Commun. Lett., 19 (2015), 195.  doi: 10.1109/LCOMM.2014.2381245.  Google Scholar

[9]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, Some interesting properties for zero-forcing beamforming under per-antenna power constraints in rural areas,, J. Glob. Optim., (): 10898.  doi: 10.1007/s10898-014-0237-4.  Google Scholar

[10]

B. Li, C. Z. Wu, H. H. Dam, A. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method,, IEEE Trans. Signal Process., ().   Google Scholar

[11]

H. H. Dam, A. Cantoni and B. Li, A fast low complexity method for optimal zero-forcing beamformer MU-MIMO system,, IEEE Signal Process. Lett., 22 (2015), 1443.   Google Scholar

[12]

B. Li, H. H. Dam, K. L. Teo and A. Cantoni, A Low Complexity Optimization Algorithm for Zero-Forcing Precoding under Per-antenna Power Constraints,, The 40th IEEE International Conference on Acoustics, (2015).   Google Scholar

[13]

B. Li, H. H. Dam, K. L. Teo and A. Cantoni, A Survey on Zero-Forcing Beamformer Design under Per-antenna Power Constraints for Multiuser MIMO Systems,, 2015 IEEE International Conference on Digital Signal Processing, (2015).   Google Scholar

[14]

D. Li, J. Song and Y. C. Lim, A polynomial-time alogorithm for designing digital filters with power-of-two coefficients,, Proc. IEEE Int. Symp. Circuits Syst., (1993), 84.   Google Scholar

[15]

Y. C. Lim, Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude,, IEEE Trans. Circuits Syst., 37 (1990), 1480.  doi: 10.1109/31.101268.  Google Scholar

[16]

Y. C. Lim and S. R. Parker, FIR filter design over a discrete powers-of-two coefficients space,, IEEE Trans. Acoust. Speech Signal Process., 31 (1983), 583.   Google Scholar

[17]

H. Lin, Y. Wang and X. Wang, An auxiliary function method for global minimization in integer programming,, Math. Probl. Eng., 2011 (2011), 1.  doi: 10.1155/2011/402437.  Google Scholar

[18]

Y. Liu, An exterior point linear programming method based on inclusive nornal cone,, Journal of Industrial and Management Optimization, 6 (2010), 825.  doi: 10.3934/jimo.2010.6.825.  Google Scholar

[19]

J. Quan, Z. Wu and G. Li, Global optimality conditions for some classes of polynomial integer programming problems,, Journal of Industrial and Management Optimization, 7 (2011), 67.  doi: 10.3934/jimo.2011.7.67.  Google Scholar

[20]

A. Wiesel, Y. C. Eldar and S. Shamai, Linear precoding via conic optimizaiton for fixed MIMO receivers,, IEEE Trans. Signal Process., 54 (2006), 161.   Google Scholar

[21]

A. Wiesel, Y. C. Eldar and S. Shamai, Zero-forcing precoding and generalized inverses,, IEEE Trans. Signal Process., 56 (2008), 4409.  doi: 10.1109/TSP.2008.924638.  Google Scholar

[22]

C. J. Yu, K. L. Teo and H. H. Dam, Design of allpass variable fractional delay filter with signed powers-of-two coefficients,, Signal Process., 95 (2014), 32.  doi: 10.1016/j.sigpro.2013.08.005.  Google Scholar

show all references

References:
[1]

G. Caire and S. Shamai, On the achievable throughput of multiatenna Gaussian broadcast channel,, IEEE Trans. Inf. Theory., 49 (2003), 1691.  doi: 10.1109/TIT.2003.813523.  Google Scholar

[2]

H. H. Dam and A. Cantoni, Interior point method for optimum zero-forcing beamforming with per-antenna power constraints and optimal step size,, Signal Process., 106 (2015), 10.  doi: 10.1016/j.sigpro.2014.06.028.  Google Scholar

[3]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, FIR variable digital filter with signed power-of-two coefficients,, IEEE Trans. Circuits Syst., 54 (2007), 1348.  doi: 10.1109/TCSI.2007.897775.  Google Scholar

[4]

Z. G. Feng and K. L. Teo, A discrete filled function method for the design of FIR filters with signed-powers-of-two coefficients,, IEEE Trans. Signal Process., 56 (2008), 134.  doi: 10.1109/TSP.2007.901164.  Google Scholar

[5]

K. Karakayali, R. Yates, G. Foschini and R. Valenzuela, Optimal zero-forcing beamforming with per-antenna power constraints,, IEEE International Symposium on Information Theory, (2007), 101.   Google Scholar

[6]

S. R. Lee, J. S. Kim, S. H. Moon, H. B. Kong and I. Lee, Zero-forcing beamforming in multiuser MISO downlink systems under per-antenna power constraint and equal-rate metric,, IEEE Trans. Wireless Commun., 12 (2013), 228.  doi: 10.1109/TWC.2012.120312.120332.  Google Scholar

[7]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A primal-dual interior point method for optimal zero-forcing beamformer design under per-antenna power constraints,, Optim. Lett., 8 (2014), 1829.  doi: 10.1007/s11590-013-0673-y.  Google Scholar

[8]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, A first-order optimal zero-forcing beamformer design for multiuser MIMO systems via a regularized dual accelerated gradient method,, IEEE Commun. Lett., 19 (2015), 195.  doi: 10.1109/LCOMM.2014.2381245.  Google Scholar

[9]

B. Li, H. H. Dam, A. Cantoni and K. L. Teo, Some interesting properties for zero-forcing beamforming under per-antenna power constraints in rural areas,, J. Glob. Optim., (): 10898.  doi: 10.1007/s10898-014-0237-4.  Google Scholar

[10]

B. Li, C. Z. Wu, H. H. Dam, A. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method,, IEEE Trans. Signal Process., ().   Google Scholar

[11]

H. H. Dam, A. Cantoni and B. Li, A fast low complexity method for optimal zero-forcing beamformer MU-MIMO system,, IEEE Signal Process. Lett., 22 (2015), 1443.   Google Scholar

[12]

B. Li, H. H. Dam, K. L. Teo and A. Cantoni, A Low Complexity Optimization Algorithm for Zero-Forcing Precoding under Per-antenna Power Constraints,, The 40th IEEE International Conference on Acoustics, (2015).   Google Scholar

[13]

B. Li, H. H. Dam, K. L. Teo and A. Cantoni, A Survey on Zero-Forcing Beamformer Design under Per-antenna Power Constraints for Multiuser MIMO Systems,, 2015 IEEE International Conference on Digital Signal Processing, (2015).   Google Scholar

[14]

D. Li, J. Song and Y. C. Lim, A polynomial-time alogorithm for designing digital filters with power-of-two coefficients,, Proc. IEEE Int. Symp. Circuits Syst., (1993), 84.   Google Scholar

[15]

Y. C. Lim, Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude,, IEEE Trans. Circuits Syst., 37 (1990), 1480.  doi: 10.1109/31.101268.  Google Scholar

[16]

Y. C. Lim and S. R. Parker, FIR filter design over a discrete powers-of-two coefficients space,, IEEE Trans. Acoust. Speech Signal Process., 31 (1983), 583.   Google Scholar

[17]

H. Lin, Y. Wang and X. Wang, An auxiliary function method for global minimization in integer programming,, Math. Probl. Eng., 2011 (2011), 1.  doi: 10.1155/2011/402437.  Google Scholar

[18]

Y. Liu, An exterior point linear programming method based on inclusive nornal cone,, Journal of Industrial and Management Optimization, 6 (2010), 825.  doi: 10.3934/jimo.2010.6.825.  Google Scholar

[19]

J. Quan, Z. Wu and G. Li, Global optimality conditions for some classes of polynomial integer programming problems,, Journal of Industrial and Management Optimization, 7 (2011), 67.  doi: 10.3934/jimo.2011.7.67.  Google Scholar

[20]

A. Wiesel, Y. C. Eldar and S. Shamai, Linear precoding via conic optimizaiton for fixed MIMO receivers,, IEEE Trans. Signal Process., 54 (2006), 161.   Google Scholar

[21]

A. Wiesel, Y. C. Eldar and S. Shamai, Zero-forcing precoding and generalized inverses,, IEEE Trans. Signal Process., 56 (2008), 4409.  doi: 10.1109/TSP.2008.924638.  Google Scholar

[22]

C. J. Yu, K. L. Teo and H. H. Dam, Design of allpass variable fractional delay filter with signed powers-of-two coefficients,, Signal Process., 95 (2014), 32.  doi: 10.1016/j.sigpro.2013.08.005.  Google Scholar

[1]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[2]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[3]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[4]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[5]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[6]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[7]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[8]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[9]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[10]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[11]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[12]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[13]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[14]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[15]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[16]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[17]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[18]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[19]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[20]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (99)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]