-
Previous Article
Optimal investment strategy on advertisement in duopoly
- JIMO Home
- This Issue
-
Next Article
A global optimal zero-forcing Beamformer design with signed power-of-two coefficients
An $(s,S)$ inventory model with level-dependent $G/M/1$-Type structure
1. | Department of Industrial Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, South Korea |
2. | Department of Industrial Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-759, South Korea, South Korea |
References:
[1] |
E. Altman and A. A. Borovkov, On the stability of retrial queues,, Queueing Syst., 26 (1997), 343.
doi: 10.1023/A:1019193527040. |
[2] |
S. Asmussen, Applied Probability and Queues,, John Wiley & Sons, (1987).
|
[3] |
A. Brandt and M. Brandt, On the M(n)/M(n)/s queue with impatient calls,, Perform. Eval., 35 (1999), 1. Google Scholar |
[4] |
A. Brandt and M. Brandt, Asymptotic results and a markovian approximation for the M(n)/M(n)/s+GI system,, Queueing Syst., 41 (2002), 73.
doi: 10.1023/A:1015781818360. |
[5] |
L. Bright and P. G. Taylor, Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes,, Commun. Statist. - Stochastic Models, 11 (1995), 497.
doi: 10.1080/15326349508807357. |
[6] |
S. Charkravarthy and J. Daniel, A markovian inventory system with random shelf time and back orders,, Computers and Industrial Engineering, 47 (2004), 315. Google Scholar |
[7] |
G. I. Falin, On sufficient conditions for ergodicity of multichannel queueing systems with repeated calls,, Adv. Appl. Prob., 16 (1984), 447.
doi: 10.2307/1427079. |
[8] |
Qi-Ming He, E. M. Jewkes and J. Buzacott, The value of information used in inventory control of a make-to-order inventory-production system,, IIE Transactions, 34 (2002), 999.
doi: 10.1080/07408170208928929. |
[9] |
S. Ioannidis, O. Jouini, A. A. Economopoulos and V. S. Kouikoglou, Control policies for single-stage production systems with perishable inventory and customer impatience,, Annals of Operations Research, (2012), 1.
doi: 10.1007/s10479-012-1058-9. |
[10] |
S. Kalpakam and K. P. Sapna, Continuous review $(s,S)$ inventory system with random lifetimes and positive leadtimes,, Operations Research Letters, 16 (1994), 115.
doi: 10.1016/0167-6377(94)90066-3. |
[11] |
S. Kalpakam and K. P. Sapna, $(S-1,S)$ perishable systems with stochastic lead times,, Mathematical and Computer Modelling, 21 (1995), 95.
doi: 10.1016/0895-7177(95)00026-X. |
[12] |
I. Karaesmen, A. Scheller-Wolf and B. Deniz, Managing perishable and aging invetories: Review and future research directions,, In Planning Production and Inventories in the Extended Enterprise, (2011), 393. Google Scholar |
[13] |
A. Krishnamoorthy, K. P. Jose and V. C. Narayanan, Numerical investigation of a PH/PH/1 inventory system with positive service time and shortage,, Neural Parallel & Scientific Comp., 16 (2008), 579.
|
[14] |
S. Kumaraswamy and E. Sankarasubramanian, A continuous review of $(S-s)$ inventory systems in which depletion is due to demand and failure of units,, Journal of Operational Research Society, 32 (1981), 997. Google Scholar |
[15] |
G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling,, ASA-SIAM series on statistics and applied probability, (1999).
doi: 10.1137/1.9780898719734. |
[16] |
L. Liu, $(s,S)$ continous review models for inventory with random lifetimes,, Operations Research Letters, 9 (1990), 161.
doi: 10.1016/0167-6377(90)90014-V. |
[17] |
L. Liu and T. Yang, An $(s,S)$ random lifetime inventory model with a positive lead time,, European Journal of Operational Research, 112 (1999), 52.
doi: 10.1016/S0377-2217(97)00426-8. |
[18] |
S. Nahmias, Perishable inventory theory: A review,, Operational Research, 30 (1982), 680.
doi: 10.1287/opre.30.4.680. |
[19] |
M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach,, The Johns Hopkins University Press, (1981).
|
[20] |
M. F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications,, Marcel Dekker, (1989).
|
[21] |
D. Perry and W. Stadje, Perishable inventory systems with impatient demands,, Math. Meth. of OR, 50 (1999), 77.
|
[22] |
G. P. Prestacos, Blood inventory management,, Management Science, 30 (1984), 777. Google Scholar |
[23] |
M. Raafat, Survey of literature on continuously deteriorating inventory models,, Journal of Operational Research Society, 42 (1991), 27. Google Scholar |
[24] |
N. Ravichandran, Stochastic analysis of a continous review perishable inventory system with positive lead time and Poisson demand,, European Journal of Operational Research, 84 (1995), 444. Google Scholar |
[25] |
C. P. Schmidt and S. Nahmias, $(S-1,S)$ policies for perishable inventory,, Management Science, 31 (1985), 719.
doi: 10.1287/mnsc.31.6.719. |
[26] |
A. R. Ward and P. W. Glynn, A diffusion approximation for a markovian queue with reneging,, Queueing Syst., 43 (2003), 103.
doi: 10.1023/A:1021804515162. |
[27] |
S. Zeltyn and A. Mandelbaum, Call centers with impatient customers: Many-server asymptotics of the M/M/n + G queue,, Queueing Syst., 51 (2005), 361.
doi: 10.1007/s11134-005-3699-8. |
show all references
References:
[1] |
E. Altman and A. A. Borovkov, On the stability of retrial queues,, Queueing Syst., 26 (1997), 343.
doi: 10.1023/A:1019193527040. |
[2] |
S. Asmussen, Applied Probability and Queues,, John Wiley & Sons, (1987).
|
[3] |
A. Brandt and M. Brandt, On the M(n)/M(n)/s queue with impatient calls,, Perform. Eval., 35 (1999), 1. Google Scholar |
[4] |
A. Brandt and M. Brandt, Asymptotic results and a markovian approximation for the M(n)/M(n)/s+GI system,, Queueing Syst., 41 (2002), 73.
doi: 10.1023/A:1015781818360. |
[5] |
L. Bright and P. G. Taylor, Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes,, Commun. Statist. - Stochastic Models, 11 (1995), 497.
doi: 10.1080/15326349508807357. |
[6] |
S. Charkravarthy and J. Daniel, A markovian inventory system with random shelf time and back orders,, Computers and Industrial Engineering, 47 (2004), 315. Google Scholar |
[7] |
G. I. Falin, On sufficient conditions for ergodicity of multichannel queueing systems with repeated calls,, Adv. Appl. Prob., 16 (1984), 447.
doi: 10.2307/1427079. |
[8] |
Qi-Ming He, E. M. Jewkes and J. Buzacott, The value of information used in inventory control of a make-to-order inventory-production system,, IIE Transactions, 34 (2002), 999.
doi: 10.1080/07408170208928929. |
[9] |
S. Ioannidis, O. Jouini, A. A. Economopoulos and V. S. Kouikoglou, Control policies for single-stage production systems with perishable inventory and customer impatience,, Annals of Operations Research, (2012), 1.
doi: 10.1007/s10479-012-1058-9. |
[10] |
S. Kalpakam and K. P. Sapna, Continuous review $(s,S)$ inventory system with random lifetimes and positive leadtimes,, Operations Research Letters, 16 (1994), 115.
doi: 10.1016/0167-6377(94)90066-3. |
[11] |
S. Kalpakam and K. P. Sapna, $(S-1,S)$ perishable systems with stochastic lead times,, Mathematical and Computer Modelling, 21 (1995), 95.
doi: 10.1016/0895-7177(95)00026-X. |
[12] |
I. Karaesmen, A. Scheller-Wolf and B. Deniz, Managing perishable and aging invetories: Review and future research directions,, In Planning Production and Inventories in the Extended Enterprise, (2011), 393. Google Scholar |
[13] |
A. Krishnamoorthy, K. P. Jose and V. C. Narayanan, Numerical investigation of a PH/PH/1 inventory system with positive service time and shortage,, Neural Parallel & Scientific Comp., 16 (2008), 579.
|
[14] |
S. Kumaraswamy and E. Sankarasubramanian, A continuous review of $(S-s)$ inventory systems in which depletion is due to demand and failure of units,, Journal of Operational Research Society, 32 (1981), 997. Google Scholar |
[15] |
G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling,, ASA-SIAM series on statistics and applied probability, (1999).
doi: 10.1137/1.9780898719734. |
[16] |
L. Liu, $(s,S)$ continous review models for inventory with random lifetimes,, Operations Research Letters, 9 (1990), 161.
doi: 10.1016/0167-6377(90)90014-V. |
[17] |
L. Liu and T. Yang, An $(s,S)$ random lifetime inventory model with a positive lead time,, European Journal of Operational Research, 112 (1999), 52.
doi: 10.1016/S0377-2217(97)00426-8. |
[18] |
S. Nahmias, Perishable inventory theory: A review,, Operational Research, 30 (1982), 680.
doi: 10.1287/opre.30.4.680. |
[19] |
M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach,, The Johns Hopkins University Press, (1981).
|
[20] |
M. F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications,, Marcel Dekker, (1989).
|
[21] |
D. Perry and W. Stadje, Perishable inventory systems with impatient demands,, Math. Meth. of OR, 50 (1999), 77.
|
[22] |
G. P. Prestacos, Blood inventory management,, Management Science, 30 (1984), 777. Google Scholar |
[23] |
M. Raafat, Survey of literature on continuously deteriorating inventory models,, Journal of Operational Research Society, 42 (1991), 27. Google Scholar |
[24] |
N. Ravichandran, Stochastic analysis of a continous review perishable inventory system with positive lead time and Poisson demand,, European Journal of Operational Research, 84 (1995), 444. Google Scholar |
[25] |
C. P. Schmidt and S. Nahmias, $(S-1,S)$ policies for perishable inventory,, Management Science, 31 (1985), 719.
doi: 10.1287/mnsc.31.6.719. |
[26] |
A. R. Ward and P. W. Glynn, A diffusion approximation for a markovian queue with reneging,, Queueing Syst., 43 (2003), 103.
doi: 10.1023/A:1021804515162. |
[27] |
S. Zeltyn and A. Mandelbaum, Call centers with impatient customers: Many-server asymptotics of the M/M/n + G queue,, Queueing Syst., 51 (2005), 361.
doi: 10.1007/s11134-005-3699-8. |
[1] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[2] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[3] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[4] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[5] |
Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1 |
[6] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[7] |
Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931 |
[8] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[9] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[10] |
Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269 |
[11] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[12] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[13] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[14] |
Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045 |
[15] |
Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020128 |
[16] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]