April  2016, 12(2): 609-624. doi: 10.3934/jimo.2016.12.609

An $(s,S)$ inventory model with level-dependent $G/M/1$-Type structure

1. 

Department of Industrial Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, South Korea

2. 

Department of Industrial Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 501-759, South Korea, South Korea

Received  July 2014 Revised  March 2015 Published  June 2015

Inventory models are widely used in a variety of real-world applications. In particular, inventory systems with perishable items have received a significant amount of attention. We consider an $(s,S)$ continuous inventory model with perishable items, impatient customers, and random lead times. Two characteristic behaviors of impatient customers are balking and reneging. Balking is when a customer departs the system if the item they desire is unavailable. Reneging occurs when a waiting customer leaves the system if their demand is not met within a set period of time. The proposed system is modeled as a two-dimensional Markov process with level-dependent $G/M/1$-type structure. We also consider independent and identically distributed replenishment lead times that follow a phase-type distribution. We find an efficient approximation method for the joint stationary distribution of the number of items in the system, and provide formulas for several performance measures. Moreover, to minimize system costs, we find the optimal values of $s$ and $S$ numerically and perform a sensitivity analysis on key parameters.
Citation: Sung-Seok Ko, Jangha Kang, E-Yeon Kwon. An $(s,S)$ inventory model with level-dependent $G/M/1$-Type structure. Journal of Industrial & Management Optimization, 2016, 12 (2) : 609-624. doi: 10.3934/jimo.2016.12.609
References:
[1]

E. Altman and A. A. Borovkov, On the stability of retrial queues,, Queueing Syst., 26 (1997), 343.  doi: 10.1023/A:1019193527040.  Google Scholar

[2]

S. Asmussen, Applied Probability and Queues,, John Wiley & Sons, (1987).   Google Scholar

[3]

A. Brandt and M. Brandt, On the M(n)/M(n)/s queue with impatient calls,, Perform. Eval., 35 (1999), 1.   Google Scholar

[4]

A. Brandt and M. Brandt, Asymptotic results and a markovian approximation for the M(n)/M(n)/s+GI system,, Queueing Syst., 41 (2002), 73.  doi: 10.1023/A:1015781818360.  Google Scholar

[5]

L. Bright and P. G. Taylor, Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes,, Commun. Statist. - Stochastic Models, 11 (1995), 497.  doi: 10.1080/15326349508807357.  Google Scholar

[6]

S. Charkravarthy and J. Daniel, A markovian inventory system with random shelf time and back orders,, Computers and Industrial Engineering, 47 (2004), 315.   Google Scholar

[7]

G. I. Falin, On sufficient conditions for ergodicity of multichannel queueing systems with repeated calls,, Adv. Appl. Prob., 16 (1984), 447.  doi: 10.2307/1427079.  Google Scholar

[8]

Qi-Ming He, E. M. Jewkes and J. Buzacott, The value of information used in inventory control of a make-to-order inventory-production system,, IIE Transactions, 34 (2002), 999.  doi: 10.1080/07408170208928929.  Google Scholar

[9]

S. Ioannidis, O. Jouini, A. A. Economopoulos and V. S. Kouikoglou, Control policies for single-stage production systems with perishable inventory and customer impatience,, Annals of Operations Research, (2012), 1.  doi: 10.1007/s10479-012-1058-9.  Google Scholar

[10]

S. Kalpakam and K. P. Sapna, Continuous review $(s,S)$ inventory system with random lifetimes and positive leadtimes,, Operations Research Letters, 16 (1994), 115.  doi: 10.1016/0167-6377(94)90066-3.  Google Scholar

[11]

S. Kalpakam and K. P. Sapna, $(S-1,S)$ perishable systems with stochastic lead times,, Mathematical and Computer Modelling, 21 (1995), 95.  doi: 10.1016/0895-7177(95)00026-X.  Google Scholar

[12]

I. Karaesmen, A. Scheller-Wolf and B. Deniz, Managing perishable and aging invetories: Review and future research directions,, In Planning Production and Inventories in the Extended Enterprise, (2011), 393.   Google Scholar

[13]

A. Krishnamoorthy, K. P. Jose and V. C. Narayanan, Numerical investigation of a PH/PH/1 inventory system with positive service time and shortage,, Neural Parallel & Scientific Comp., 16 (2008), 579.   Google Scholar

[14]

S. Kumaraswamy and E. Sankarasubramanian, A continuous review of $(S-s)$ inventory systems in which depletion is due to demand and failure of units,, Journal of Operational Research Society, 32 (1981), 997.   Google Scholar

[15]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling,, ASA-SIAM series on statistics and applied probability, (1999).  doi: 10.1137/1.9780898719734.  Google Scholar

[16]

L. Liu, $(s,S)$ continous review models for inventory with random lifetimes,, Operations Research Letters, 9 (1990), 161.  doi: 10.1016/0167-6377(90)90014-V.  Google Scholar

[17]

L. Liu and T. Yang, An $(s,S)$ random lifetime inventory model with a positive lead time,, European Journal of Operational Research, 112 (1999), 52.  doi: 10.1016/S0377-2217(97)00426-8.  Google Scholar

[18]

S. Nahmias, Perishable inventory theory: A review,, Operational Research, 30 (1982), 680.  doi: 10.1287/opre.30.4.680.  Google Scholar

[19]

M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach,, The Johns Hopkins University Press, (1981).   Google Scholar

[20]

M. F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications,, Marcel Dekker, (1989).   Google Scholar

[21]

D. Perry and W. Stadje, Perishable inventory systems with impatient demands,, Math. Meth. of OR, 50 (1999), 77.   Google Scholar

[22]

G. P. Prestacos, Blood inventory management,, Management Science, 30 (1984), 777.   Google Scholar

[23]

M. Raafat, Survey of literature on continuously deteriorating inventory models,, Journal of Operational Research Society, 42 (1991), 27.   Google Scholar

[24]

N. Ravichandran, Stochastic analysis of a continous review perishable inventory system with positive lead time and Poisson demand,, European Journal of Operational Research, 84 (1995), 444.   Google Scholar

[25]

C. P. Schmidt and S. Nahmias, $(S-1,S)$ policies for perishable inventory,, Management Science, 31 (1985), 719.  doi: 10.1287/mnsc.31.6.719.  Google Scholar

[26]

A. R. Ward and P. W. Glynn, A diffusion approximation for a markovian queue with reneging,, Queueing Syst., 43 (2003), 103.  doi: 10.1023/A:1021804515162.  Google Scholar

[27]

S. Zeltyn and A. Mandelbaum, Call centers with impatient customers: Many-server asymptotics of the M/M/n + G queue,, Queueing Syst., 51 (2005), 361.  doi: 10.1007/s11134-005-3699-8.  Google Scholar

show all references

References:
[1]

E. Altman and A. A. Borovkov, On the stability of retrial queues,, Queueing Syst., 26 (1997), 343.  doi: 10.1023/A:1019193527040.  Google Scholar

[2]

S. Asmussen, Applied Probability and Queues,, John Wiley & Sons, (1987).   Google Scholar

[3]

A. Brandt and M. Brandt, On the M(n)/M(n)/s queue with impatient calls,, Perform. Eval., 35 (1999), 1.   Google Scholar

[4]

A. Brandt and M. Brandt, Asymptotic results and a markovian approximation for the M(n)/M(n)/s+GI system,, Queueing Syst., 41 (2002), 73.  doi: 10.1023/A:1015781818360.  Google Scholar

[5]

L. Bright and P. G. Taylor, Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes,, Commun. Statist. - Stochastic Models, 11 (1995), 497.  doi: 10.1080/15326349508807357.  Google Scholar

[6]

S. Charkravarthy and J. Daniel, A markovian inventory system with random shelf time and back orders,, Computers and Industrial Engineering, 47 (2004), 315.   Google Scholar

[7]

G. I. Falin, On sufficient conditions for ergodicity of multichannel queueing systems with repeated calls,, Adv. Appl. Prob., 16 (1984), 447.  doi: 10.2307/1427079.  Google Scholar

[8]

Qi-Ming He, E. M. Jewkes and J. Buzacott, The value of information used in inventory control of a make-to-order inventory-production system,, IIE Transactions, 34 (2002), 999.  doi: 10.1080/07408170208928929.  Google Scholar

[9]

S. Ioannidis, O. Jouini, A. A. Economopoulos and V. S. Kouikoglou, Control policies for single-stage production systems with perishable inventory and customer impatience,, Annals of Operations Research, (2012), 1.  doi: 10.1007/s10479-012-1058-9.  Google Scholar

[10]

S. Kalpakam and K. P. Sapna, Continuous review $(s,S)$ inventory system with random lifetimes and positive leadtimes,, Operations Research Letters, 16 (1994), 115.  doi: 10.1016/0167-6377(94)90066-3.  Google Scholar

[11]

S. Kalpakam and K. P. Sapna, $(S-1,S)$ perishable systems with stochastic lead times,, Mathematical and Computer Modelling, 21 (1995), 95.  doi: 10.1016/0895-7177(95)00026-X.  Google Scholar

[12]

I. Karaesmen, A. Scheller-Wolf and B. Deniz, Managing perishable and aging invetories: Review and future research directions,, In Planning Production and Inventories in the Extended Enterprise, (2011), 393.   Google Scholar

[13]

A. Krishnamoorthy, K. P. Jose and V. C. Narayanan, Numerical investigation of a PH/PH/1 inventory system with positive service time and shortage,, Neural Parallel & Scientific Comp., 16 (2008), 579.   Google Scholar

[14]

S. Kumaraswamy and E. Sankarasubramanian, A continuous review of $(S-s)$ inventory systems in which depletion is due to demand and failure of units,, Journal of Operational Research Society, 32 (1981), 997.   Google Scholar

[15]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling,, ASA-SIAM series on statistics and applied probability, (1999).  doi: 10.1137/1.9780898719734.  Google Scholar

[16]

L. Liu, $(s,S)$ continous review models for inventory with random lifetimes,, Operations Research Letters, 9 (1990), 161.  doi: 10.1016/0167-6377(90)90014-V.  Google Scholar

[17]

L. Liu and T. Yang, An $(s,S)$ random lifetime inventory model with a positive lead time,, European Journal of Operational Research, 112 (1999), 52.  doi: 10.1016/S0377-2217(97)00426-8.  Google Scholar

[18]

S. Nahmias, Perishable inventory theory: A review,, Operational Research, 30 (1982), 680.  doi: 10.1287/opre.30.4.680.  Google Scholar

[19]

M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach,, The Johns Hopkins University Press, (1981).   Google Scholar

[20]

M. F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications,, Marcel Dekker, (1989).   Google Scholar

[21]

D. Perry and W. Stadje, Perishable inventory systems with impatient demands,, Math. Meth. of OR, 50 (1999), 77.   Google Scholar

[22]

G. P. Prestacos, Blood inventory management,, Management Science, 30 (1984), 777.   Google Scholar

[23]

M. Raafat, Survey of literature on continuously deteriorating inventory models,, Journal of Operational Research Society, 42 (1991), 27.   Google Scholar

[24]

N. Ravichandran, Stochastic analysis of a continous review perishable inventory system with positive lead time and Poisson demand,, European Journal of Operational Research, 84 (1995), 444.   Google Scholar

[25]

C. P. Schmidt and S. Nahmias, $(S-1,S)$ policies for perishable inventory,, Management Science, 31 (1985), 719.  doi: 10.1287/mnsc.31.6.719.  Google Scholar

[26]

A. R. Ward and P. W. Glynn, A diffusion approximation for a markovian queue with reneging,, Queueing Syst., 43 (2003), 103.  doi: 10.1023/A:1021804515162.  Google Scholar

[27]

S. Zeltyn and A. Mandelbaum, Call centers with impatient customers: Many-server asymptotics of the M/M/n + G queue,, Queueing Syst., 51 (2005), 361.  doi: 10.1007/s11134-005-3699-8.  Google Scholar

[1]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[2]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[3]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[4]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[5]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[6]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[7]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[8]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[9]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[10]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[11]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[12]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[13]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[14]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[15]

Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020128

[16]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]