Advanced Search
Article Contents
Article Contents

Optimal investment strategy on advertisement in duopoly

Abstract Related Papers Cited by
  • In this paper, we will investigate a duopoly competition issue in a commencing period of horizontal expansion. This is an important problem in marketing investment for new products in free market. First, we propose a new market model characterized by nonlinear differential-algebraic equations with continuous inequality constraints, which aims to maximize an enterprise's product market share rather than its profit in the commencing period in an environment of the duopoly market. In order to solve the investment problem numerically based on proposed model, the control parameterization technique together with the constraint transcription method is used by transforming the proposed problem into a sequence of optimal parameter selection problems. Finally, a practical example on beer sales is used to show the effectiveness of proposed model and we present the optimal advertising strategies corresponding to different competition situations.
    Mathematics Subject Classification: Primary: 90-08; Secondary: 49M37.


    \begin{equation} \\ \end{equation}
  • [1]

    B. L. Bai and R. X. Bai, The Modern Western Economic Theory, Economic Science Press, 2011.


    F. M. Bass, A. Krishnamoorthy, A. Prasad and S. P. Sethi, Generic and brand advertising strategies in a dynamic duopoly, Marketing Science, 24 (2005), 556-568.doi: 10.1287/mksc.1050.0119.


    G. M. Erickson, An oligopoly model of dynamic advertising competition, European Journal of Operational Research, 19 (2009), 374-388.doi: 10.1016/j.ejor.2008.06.023.


    G. M. Erickson, Advertising competition in a dynamic oligopoly with multiple brands, Operations Research, 57 (2009), 1106-1113.doi: 10.1287/opre.1080.0663.


    G. Fasano and J. Pintér, Modeling and Optimization in Space Engineering, Springer, 2013.doi: 10.1007/978-1-4614-4469-5.


    H. Gao, Western Economics: Macro Part, China Renmin University Press, 2011.


    L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER 3: Optimal Control Software, Version 2.0, Theory and user manual, 2002.


    C. H. Jiang, Q. Lin, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty method for free terminal time optimal control problem with continuous inequality constraints, Journal of Optimization Theory and Applications, 154 (2012), 30-53.doi: 10.1007/s10957-012-0006-9.


    A. Krishnamoorthy, A. Prasad and S. P. Sethi, Optimal pricing and advertising in a durable-good duopoly, European Journal of Operational Research, 200 (2010), 486-497.doi: 10.1016/j.ejor.2009.01.003.


    B. Li, K. L. Teo and G. R. Duan, Optimal control computation for discrete time time-delayed optimal control problem with all-time-step inequality constraints, International Journal of Innovative Computing, Information and Control, 6 (2010), 3157-3175.


    B. Li, K. L. Teo, C. C. Lim and G. R. Duan, An optimal PID controller design for nonlinear constrained optimal control problems, Discrete and Continuous Dynamical Systems-Series B, 16 (2011), 1101-1117.doi: 10.3934/dcdsb.2011.16.1101.


    B. Li, K. L. Teo, G. H. Zhao and G. R. Duan, An efficient computational approach to a class of minmax optimal control problems with applications, The ANZIAM Journal, 51 (2009), 162-177.doi: 10.1017/S1446181110000040.


    B. Li, C. Xu, K. L. Teo and J. Chu, Time optimal Zermelo's navigation problem with moving and fixed obstacles, Applied Mathematics and Computation, 224 (2013), 866-875.doi: 10.1016/j.amc.2013.08.092.


    B. Li, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem, Journal of Optimization Theory and Applications, 151 (2011), 260-291.doi: 10.1007/s10957-011-9904-5.


    R. C. Loxtonnd, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control, Automatica, 45 (2009), 2250-2257.doi: 10.1016/j.automatica.2009.05.029.


    T. Matsumura and T. Sunada, Advertising competition in a mixed oligopoly, Economics Letters, 119 (2013), 183-185.doi: 10.1016/j.econlet.2013.02.021.


    J. P. Nelson, Beer advertising and marketing update: structure, conduct, and social costs, Review of Industrial Organization, 26 (2005), 269-306.


    A. Prasad and S. P. Sethi, Competitive advertising under uncertainty: A stochastic differential game approach, Journal of Optimization Theory and Applications, 123 (2004), 163-185.doi: 10.1023/B:JOTA.0000043996.62867.20.


    A. Prasad, S. P. Sethi and P. A. Naik, Understanding the impact of churn in dynamic oligopoly markets, Automatica, 48 (2012), 2882-2887.doi: 10.1016/j.automatica.2012.08.031.


    J. Qi and D. W. Wang, On analysis of chaotic synchronization in an advertising competition model, Journal of Management Sciences in China, 7 (2004), 27-31.


    J. Qi and D. W. Wang, Optimal control strategies for an advertising competing model, Systems Engineering-Theory & Practice, 27 (2007), 39-44.


    S. P. Sethi, Optimal control of the Vidale-Wolfe advertising model, Operations Research, 21 (1973), 998-1013.doi: 10.1287/opre.21.4.998.


    S. P. Sethi, A. Prasad and X. L. He, Optimal advertising and pricing in a new-product adoption model, Journal of Optimization Theory and Applications, 139 (2008), 351-360.doi: 10.1007/s10957-008-9472-5.


    J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer Heidelberg, 2002.doi: 10.1007/978-0-387-21738-3.


    K. L. Teo, C. J. Goh and K. H. Wong, A unified computational approach to optimal control problems, Longman Scientific and Technical, 1991.


    K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, The control parameterization enhancing transform for constrained optimal control problems, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 40 (1999), 314-335.doi: 10.1017/S0334270000010936.


    M. L. Vidale and H. B. Wolfe, An operations-research study of sales response to advertising, Operations Research, 5 (1957), 370-381.doi: 10.1287/opre.5.3.370.


    Q. Wang and Z. Wu, A duopolistic model of dynamic competitive advertising, European Journal of Operational Research, 128 (2001), 213-226.doi: 10.1016/S0377-2217(99)00346-X.


    C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem, Journal of Industrial Management and Optimization, 8 (2012), 485-491.doi: 10.3934/jimo.2012.8.485.


    C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, A new exact penalty function method for continuous inequality constrained optimization problems, Journal of Industrial and Management Optimization, 6 (2010), 895-910.doi: 10.3934/jimo.2010.6.895.


    J. K. Zhang, Advertising Economics Practical Tutorial, Shanghai Far East Publishers, 1998.

  • 加载中

Article Metrics

HTML views() PDF downloads(203) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint