April  2016, 12(2): 637-652. doi: 10.3934/jimo.2016.12.637

Tail asymptotics of fluid queues in a distributed server system fed by a heavy-tailed ON-OFF flow

1. 

Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea, South Korea, South Korea

2. 

Department of Statistics, Changwon National University, Changwon 641-773, South Korea

Received  September 2014 Revised  March 2015 Published  June 2015

The appearance of heavy-tailedness in users' traffic significantly degrades the performance of communication systems, and a distributed server system is considered as a good solution to this problem because of its distributed service characteristic by multiple servers. So we tackle the question in this paper that a distributed server system can alleviate heavy-tailedness, so that users experience good QoS as if there were no heavy-tailedness. To this end, we first mathematically model a distributed server system and obtain a heavy-tailed random sum with the help of the theory of perturbed random walk. We then analyze the tail asymptotic of the heavy-tailed random sum to find a condition with which the distributed server system can alleviate heavy-tailedness.
Citation: Byeongchan Lee, Jonghun Yoon, Yang Woo Shin, Ganguk Hwang. Tail asymptotics of fluid queues in a distributed server system fed by a heavy-tailed ON-OFF flow. Journal of Industrial & Management Optimization, 2016, 12 (2) : 637-652. doi: 10.3934/jimo.2016.12.637
References:
[1]

A. Aleškevičien.e, R. Leipus and J. Šiaulys, Tail behavior of random sums under consistent variation with applications to the compound renewal risk model,, Extremes, 11 (2008), 261.  doi: 10.1007/s10687-008-0057-3.  Google Scholar

[2]

S. Asmussen, H. Schmidli and V. Schmidt, Tail probabilities for non-standard risk and queueing processes with subexponential jumps,, Advances in Applied Probability, (1999), 442.  doi: 10.1239/aap/1029955142.  Google Scholar

[3]

P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events: For Insurance and Finance,, Springer-Verlag, (1997).  doi: 10.1007/978-3-642-33483-2.  Google Scholar

[4]

G. Faÿ, B. González-Arévalo, T. Mikosch and G. Samorodnitsky, Modeling teletraffic arrivals by a Poisson cluster process,, Queueing Systems, 54 (2006), 121.  doi: 10.1007/s11134-006-9348-z.  Google Scholar

[5]

S. Foss, D. Korshunov, and S. Zachary, An Introduction to Heavy-tailed and Subexponential Distributions,, $2^{nd}$ edition, (2013).  doi: 10.1007/978-1-4614-7101-1.  Google Scholar

[6]

W. E. Leland, M. S. Taqqu, W. Willinger and D. V. Wilson, On the self-similar nature of Ethernet traffic,, ACM SIGCOMM Computer Communication Review, 23 (1993), 183.   Google Scholar

[7]

K. W. Ng, Q. H. Tang and H. Yang, Maxima of sums of heavy-tailed random variables,, Astin Bulletin, 32 (2002), 43.  doi: 10.2143/AST.32.1.1013.  Google Scholar

[8]

V. Paxson and S. Floyd, Wide area traffic: the failure of Poisson modeling,, IEEE/ACM Transactions on Networking (ToN), 3 (1995), 226.  doi: 10.1145/190314.190338.  Google Scholar

[9]

Z. Palmowski and B. Zwart, Tail asymptotics of the supremum of a regenerative process,, Journal of applied probability, (2007), 349.  doi: 10.1239/jap/1183667406.  Google Scholar

[10]

C. Y. Robert and J. Segers, Tails of random sums of a heavy-tailed number of light-tailed terms,, Insurance: Mathematics and Economics, 43 (2008), 85.  doi: 10.1016/j.insmatheco.2007.10.001.  Google Scholar

[11]

F. Semchedine, L. Bouallouche-Medjkoune, and D. Aïssani, Task assignment policies in distributed server systems: A survey,, Journal of Network and Computer Applications, 34 (2011), 1123.  doi: 10.1016/j.jnca.2011.01.011.  Google Scholar

[12]

K. Sigman, Appendix: A primer on heavy-tailed distributions,, Queueing Systems, 33 (1999), 261.  doi: 10.1023/A:1019180230133.  Google Scholar

[13]

G. E. Willmot and H. Yang, Martingales and ruin probability,, Actuarial Research Clearing House, 1 (1996), 521.   Google Scholar

show all references

References:
[1]

A. Aleškevičien.e, R. Leipus and J. Šiaulys, Tail behavior of random sums under consistent variation with applications to the compound renewal risk model,, Extremes, 11 (2008), 261.  doi: 10.1007/s10687-008-0057-3.  Google Scholar

[2]

S. Asmussen, H. Schmidli and V. Schmidt, Tail probabilities for non-standard risk and queueing processes with subexponential jumps,, Advances in Applied Probability, (1999), 442.  doi: 10.1239/aap/1029955142.  Google Scholar

[3]

P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events: For Insurance and Finance,, Springer-Verlag, (1997).  doi: 10.1007/978-3-642-33483-2.  Google Scholar

[4]

G. Faÿ, B. González-Arévalo, T. Mikosch and G. Samorodnitsky, Modeling teletraffic arrivals by a Poisson cluster process,, Queueing Systems, 54 (2006), 121.  doi: 10.1007/s11134-006-9348-z.  Google Scholar

[5]

S. Foss, D. Korshunov, and S. Zachary, An Introduction to Heavy-tailed and Subexponential Distributions,, $2^{nd}$ edition, (2013).  doi: 10.1007/978-1-4614-7101-1.  Google Scholar

[6]

W. E. Leland, M. S. Taqqu, W. Willinger and D. V. Wilson, On the self-similar nature of Ethernet traffic,, ACM SIGCOMM Computer Communication Review, 23 (1993), 183.   Google Scholar

[7]

K. W. Ng, Q. H. Tang and H. Yang, Maxima of sums of heavy-tailed random variables,, Astin Bulletin, 32 (2002), 43.  doi: 10.2143/AST.32.1.1013.  Google Scholar

[8]

V. Paxson and S. Floyd, Wide area traffic: the failure of Poisson modeling,, IEEE/ACM Transactions on Networking (ToN), 3 (1995), 226.  doi: 10.1145/190314.190338.  Google Scholar

[9]

Z. Palmowski and B. Zwart, Tail asymptotics of the supremum of a regenerative process,, Journal of applied probability, (2007), 349.  doi: 10.1239/jap/1183667406.  Google Scholar

[10]

C. Y. Robert and J. Segers, Tails of random sums of a heavy-tailed number of light-tailed terms,, Insurance: Mathematics and Economics, 43 (2008), 85.  doi: 10.1016/j.insmatheco.2007.10.001.  Google Scholar

[11]

F. Semchedine, L. Bouallouche-Medjkoune, and D. Aïssani, Task assignment policies in distributed server systems: A survey,, Journal of Network and Computer Applications, 34 (2011), 1123.  doi: 10.1016/j.jnca.2011.01.011.  Google Scholar

[12]

K. Sigman, Appendix: A primer on heavy-tailed distributions,, Queueing Systems, 33 (1999), 261.  doi: 10.1023/A:1019180230133.  Google Scholar

[13]

G. E. Willmot and H. Yang, Martingales and ruin probability,, Actuarial Research Clearing House, 1 (1996), 521.   Google Scholar

[1]

Karl-Peter Hadeler, Frithjof Lutscher. Quiescent phases with distributed exit times. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 849-869. doi: 10.3934/dcdsb.2012.17.849

[2]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[3]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

[4]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[5]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[6]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[7]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[8]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[9]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[10]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[11]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[12]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[13]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020027

[14]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[15]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[16]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[17]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[18]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[19]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

[20]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (0)

[Back to Top]