• Previous Article
    Effect of energy-saving server scheduling on power consumption for large-scale data centers
  • JIMO Home
  • This Issue
  • Next Article
    Tail asymptotics of fluid queues in a distributed server system fed by a heavy-tailed ON-OFF flow
April  2016, 12(2): 653-666. doi: 10.3934/jimo.2016.12.653

Analysis of an M/M/1 queue with vacations and impatience timers which depend on the server's states

1. 

Department of Statistics, College of Sciences, Yanshan University, Qinhuangdao 066004

2. 

Department of Intelligence and Informatics, Konan University, Kobe 658-8501

3. 

School of Economics and Management, Yanshan University, Qinhuangdao 066004, China

Received  September 2014 Revised  March 2015 Published  June 2015

We consider an M/M/1 queueing system with vacations and impatient customers. Whenever a customer arrives at the system, it activates an random ``impatience timer". If the customer's service has not been completed before the customer's impatience timer expires, the customer abandons the queue, and never returns. It is assumed that the impatience timer depends on the server's states. We analyze both multiple and single vacation scenarios and derive the probability generating functions of the number of customers in the system when the server is in vacation period and busy period. Then, we obtain explicit expressions for various performance measures such as the mean system sizes when the server is either on vacation or busy, the proportion of customers served, and the average rate of abandonments due to impatience. We present some numerical results for multiple vacation scenario to show the effects of the parameters of impatience timers on some performance measures. Finally, we show some inequalities on some performances under the single vacation policy and under multiple vacation policy.
Citation: Dequan Yue, Wuyi Yue, Guoxi Zhao. Analysis of an M/M/1 queue with vacations and impatience timers which depend on the server's states. Journal of Industrial & Management Optimization, 2016, 12 (2) : 653-666. doi: 10.3934/jimo.2016.12.653
References:
[1]

E. Altman and U. Yechiali, Analysis of customers' impatience in queues with server vacations,, Queueing Systems, 52 (2006), 261.  doi: 10.1007/s11134-006-6134-x.  Google Scholar

[2]

E. Altman and U. Yechiali, Infinite-server queues with systems' additional task and impatient customers,, Probability in the Engineering and Informational Sciences, 22 (2008), 477.  doi: 10.1007/978-1-4020-8741-7_57.  Google Scholar

[3]

C. J. Ancker and A. V. Gafarian, Some queueing problems with balking and reneging,, Operations Research, 11 (1963), 88.  doi: 10.1287/opre.11.1.88.  Google Scholar

[4]

F. Baccelli, P. Boyer and G. Hebuterne, Single-server queues with impatient customers,, Advances in Applied Probability, 16 (1984), 887.  doi: 10.2307/1427345.  Google Scholar

[5]

F. Baccelli and G. Hebuterne, On queues with impatient customers,, in Perforamnce' 81 (F. Kylstra, (1981), 159.   Google Scholar

[6]

S. Benjaafar, J. Gayon and S. Tepe, Optimal control of a production-inventory system with customer impatience,, Operations Research Letters, 38 (2010), 267.  doi: 10.1016/j.orl.2010.03.008.  Google Scholar

[7]

N. K. Boots and H. Tijms, A multiserver queueing system with impatient customers,, Management Science, 45 (1999), 444.  doi: 10.1287/mnsc.45.3.444.  Google Scholar

[8]

O. J. Boxma and P. R. de Waal, Multiserver queues with impatient customers,, ITC, 14 (1994), 743.  doi: 10.1016/B978-0-444-82031-0.50079-2.  Google Scholar

[9]

S. R. Chakravarthy, A disater queue with Markovian arrivals and impatient customers,, Applied Mathematics and Computation, 214 (2009), 48.  doi: 10.1016/j.amc.2009.03.081.  Google Scholar

[10]

D. J. Daley, General customer impatience in the queue GI/G/1,, Journal of Applied Probability, 2 (1965), 186.  doi: 10.2307/3211884.  Google Scholar

[11]

S. Dimou, A. Economou and D. Fakinos, The single server vacation queueing model with geometric abandonments,, Journal of Statistical Planning and Inference, 141 (2011), 2863.  doi: 10.1016/j.jspi.2011.03.010.  Google Scholar

[12]

B. Doshi, Single server queues with vacation: A survey,, Queueing Systems, 1 (1986), 29.   Google Scholar

[13]

S. Economou and S. Kapodistria, Synchronized abandonments in a single server unreliable queue,, European Journal of Operational Research, 203 (2010), 143.  doi: 10.1016/j.ejor.2009.07.014.  Google Scholar

[14]

N. Gans, G. Koole and A. Mandelbaum, Telephone call centers: Tutotial, review, and research prospects,, Manufacturing and Service Operations Management, 5 (2003), 79.  doi: 10.1287/msom.5.2.79.16071.  Google Scholar

[15]

O. Garnett, A. Mandelbaum and M. Reiman, Designing a call center with impatient customers,, Manufacturing and Service Operations Management, 4 (2002), 208.  doi: 10.1287/msom.4.3.208.7753.  Google Scholar

[16]

S. Graves, The application of queueing theory to continous perishable inventory systems,, Management Science, 28 (1984), 401.   Google Scholar

[17]

Y. W. Shin and T. S. Choo, M/M/s queue with impatient customers and retrials,, Applied Mathematical Modelling, 33 (2009), 2596.  doi: 10.1016/j.apm.2008.07.018.  Google Scholar

[18]

L. Takacs, A single-server queue with limited virtual waiting time,, Journal of Applied Probability, 11 (1974), 612.  doi: 10.2307/3212710.  Google Scholar

[19]

H. Takagi, Queueing Analysis, A Foundation of Performance Evaluation, Volume 1: Vacation and Priority Systems,, Part 1. North-Holland, (1991).   Google Scholar

[20]

N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications,, Springer, (2006).   Google Scholar

[21]

U. Yechiali, Queues with system disasters and impatient customers when system is down,, Queueing Systems, 56 (2007), 195.  doi: 10.1007/s11134-007-9031-z.  Google Scholar

[22]

D. Yue and W. Yue, Analysis of M/M/c/N queueing system with balking, reneging and synchronous vacations,, in Advanced in Queueing Theory and Network Applications (ed. W. Yue etal.), (2009), 165.  doi: 10.1007/978-0-387-09703-9_9.  Google Scholar

[23]

D. Yue, W. Yue, Z. Saffer and X. Chen, Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy,, Journal of Industrial and Management Optimization, 10 (2014), 89.  doi: 10.3934/jimo.2014.10.89.  Google Scholar

show all references

References:
[1]

E. Altman and U. Yechiali, Analysis of customers' impatience in queues with server vacations,, Queueing Systems, 52 (2006), 261.  doi: 10.1007/s11134-006-6134-x.  Google Scholar

[2]

E. Altman and U. Yechiali, Infinite-server queues with systems' additional task and impatient customers,, Probability in the Engineering and Informational Sciences, 22 (2008), 477.  doi: 10.1007/978-1-4020-8741-7_57.  Google Scholar

[3]

C. J. Ancker and A. V. Gafarian, Some queueing problems with balking and reneging,, Operations Research, 11 (1963), 88.  doi: 10.1287/opre.11.1.88.  Google Scholar

[4]

F. Baccelli, P. Boyer and G. Hebuterne, Single-server queues with impatient customers,, Advances in Applied Probability, 16 (1984), 887.  doi: 10.2307/1427345.  Google Scholar

[5]

F. Baccelli and G. Hebuterne, On queues with impatient customers,, in Perforamnce' 81 (F. Kylstra, (1981), 159.   Google Scholar

[6]

S. Benjaafar, J. Gayon and S. Tepe, Optimal control of a production-inventory system with customer impatience,, Operations Research Letters, 38 (2010), 267.  doi: 10.1016/j.orl.2010.03.008.  Google Scholar

[7]

N. K. Boots and H. Tijms, A multiserver queueing system with impatient customers,, Management Science, 45 (1999), 444.  doi: 10.1287/mnsc.45.3.444.  Google Scholar

[8]

O. J. Boxma and P. R. de Waal, Multiserver queues with impatient customers,, ITC, 14 (1994), 743.  doi: 10.1016/B978-0-444-82031-0.50079-2.  Google Scholar

[9]

S. R. Chakravarthy, A disater queue with Markovian arrivals and impatient customers,, Applied Mathematics and Computation, 214 (2009), 48.  doi: 10.1016/j.amc.2009.03.081.  Google Scholar

[10]

D. J. Daley, General customer impatience in the queue GI/G/1,, Journal of Applied Probability, 2 (1965), 186.  doi: 10.2307/3211884.  Google Scholar

[11]

S. Dimou, A. Economou and D. Fakinos, The single server vacation queueing model with geometric abandonments,, Journal of Statistical Planning and Inference, 141 (2011), 2863.  doi: 10.1016/j.jspi.2011.03.010.  Google Scholar

[12]

B. Doshi, Single server queues with vacation: A survey,, Queueing Systems, 1 (1986), 29.   Google Scholar

[13]

S. Economou and S. Kapodistria, Synchronized abandonments in a single server unreliable queue,, European Journal of Operational Research, 203 (2010), 143.  doi: 10.1016/j.ejor.2009.07.014.  Google Scholar

[14]

N. Gans, G. Koole and A. Mandelbaum, Telephone call centers: Tutotial, review, and research prospects,, Manufacturing and Service Operations Management, 5 (2003), 79.  doi: 10.1287/msom.5.2.79.16071.  Google Scholar

[15]

O. Garnett, A. Mandelbaum and M. Reiman, Designing a call center with impatient customers,, Manufacturing and Service Operations Management, 4 (2002), 208.  doi: 10.1287/msom.4.3.208.7753.  Google Scholar

[16]

S. Graves, The application of queueing theory to continous perishable inventory systems,, Management Science, 28 (1984), 401.   Google Scholar

[17]

Y. W. Shin and T. S. Choo, M/M/s queue with impatient customers and retrials,, Applied Mathematical Modelling, 33 (2009), 2596.  doi: 10.1016/j.apm.2008.07.018.  Google Scholar

[18]

L. Takacs, A single-server queue with limited virtual waiting time,, Journal of Applied Probability, 11 (1974), 612.  doi: 10.2307/3212710.  Google Scholar

[19]

H. Takagi, Queueing Analysis, A Foundation of Performance Evaluation, Volume 1: Vacation and Priority Systems,, Part 1. North-Holland, (1991).   Google Scholar

[20]

N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications,, Springer, (2006).   Google Scholar

[21]

U. Yechiali, Queues with system disasters and impatient customers when system is down,, Queueing Systems, 56 (2007), 195.  doi: 10.1007/s11134-007-9031-z.  Google Scholar

[22]

D. Yue and W. Yue, Analysis of M/M/c/N queueing system with balking, reneging and synchronous vacations,, in Advanced in Queueing Theory and Network Applications (ed. W. Yue etal.), (2009), 165.  doi: 10.1007/978-0-387-09703-9_9.  Google Scholar

[23]

D. Yue, W. Yue, Z. Saffer and X. Chen, Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy,, Journal of Industrial and Management Optimization, 10 (2014), 89.  doi: 10.3934/jimo.2014.10.89.  Google Scholar

[1]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[2]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[3]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[4]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[5]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (85)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]