• Previous Article
    The optimal portfolios based on a modified safety-first rule with risk-free saving
  • JIMO Home
  • This Issue
  • Next Article
    Discount-offering and demand-rejection decisions for substitutable products with different profit levels
January  2016, 12(1): 73-82. doi: 10.3934/jimo.2016.12.73

A global optimization approach to fractional optimal control

1. 

Institute of Mathematics, National University of Mongolia, Ulaanbaatar, Mongolia

2. 

Department of Mathematics and Statistics, Curtin University, Perth, Western Australia, WA 6845, Australia, Australia

Received  February 2014 Revised  November 2014 Published  April 2015

In this paper, we consider a fractional optimal control problem governed by system of linear differential equations, where its cost function is expressed as the ratio of convex and concave functions. The problem is a hard nonconvex optimal control problem and application of Pontriyagin's principle does not always guarantee finding a global optimal control. Even this type of problems in a finite dimensional space is known as NP hard. This optimal control problem can, in principle, be solved by Dinkhelbach algorithm [10]. However, it leads to solving a sequence of hard D.C programming problems in its finite dimensional analogy. To overcome this difficulty, we introduce a reachable set for the linear system. In this way, the problem is reduced to a quasiconvex maximization problem in a finite dimensional space. Based on a global optimality condition, we propose an algorithm for solving this fractional optimal control problem and we show that the algorithm generates a sequence of local optimal controls with improved cost values. The proposed algorithm is then applied to several test problems, where the global optimal cost value is obtained for each case.
Citation: Enkhbat Rentsen, J. Zhou, K. L. Teo. A global optimization approach to fractional optimal control. Journal of Industrial & Management Optimization, 2016, 12 (1) : 73-82. doi: 10.3934/jimo.2016.12.73
References:
[1]

N. U. Ahmed, Dynamic Systems and Control with Applications,, World Scientific, (2006).  doi: 10.1142/6262.  Google Scholar

[2]

Y. Almogy and O. Levin, A class of fractional programming problems,, Operations Research, 19 (1971), 57.  doi: 10.1287/opre.19.1.57.  Google Scholar

[3]

C. R. Bector, Duality in nonlinear fractional programming,, Zeitschrift fur Operations Research, 17 (1973).   Google Scholar

[4]

H. P. Benson, Global optimization algorithm for the nonlinear sum of ratios problems,, Journal of Optimization Theory and Applications, 112 (2002), 1.  doi: 10.1023/A,1013072027218.  Google Scholar

[5]

I. Bykadorov, A. Ellero, S. Funari and E. Moretti, A fractional Optimal Control Problem for Maximizing Advertising Efficiency,, Working Paper n. 158/2007., ().   Google Scholar

[6]

I. Bykadorov, A. Ellero, S. Funari and E. Moretti, Dinkelbach approach to solving a class of fractional optimal control problems,, Journal of Optimization Theory & Applications, 142 (2009), 55.  doi: 10.1007/s10957-009-9540-5.  Google Scholar

[7]

A. Cambini, E. Castagnoli, L. Martein, P. Mazzoleni and S. Schaible, Generalized Convexity and Fractional Programming with Economic Applications,, Lecture Notes in Economics and Mathematical Systems, (1990).  doi: 10.1007/978-3-642-46709-7.  Google Scholar

[8]

B. D. Craven, fractional Programming,, Sigma Series in Aplied Mathematics, (1988).   Google Scholar

[9]

J. P. Crouzeix, J. A. Ferland and S. Schaible, Duality in generalized linear fractional programming,, Mathematical Programming, 27 (1983), 342.  doi: 10.1007/BF02591908.  Google Scholar

[10]

W. Dinkelbach, On nonlinear fractional programming,, Management Science, 13 (1967), 492.  doi: 10.1287/mnsc.13.7.492.  Google Scholar

[11]

W. K. Donald, The Walrasion Vision of the Microeconomy,, The university of Michigan Press, (1994).   Google Scholar

[12]

R. Enkhbat, Quasiconvex progarmming,, Lambert Publisher, (2009).   Google Scholar

[13]

R. Enkhbat and T. Ibaraki, On the maximization and minimization of quasiconvex function,, International Journal of Nonlinear and Convex Analysis, 4 (2003), 43.   Google Scholar

[14]

N. Hadjisavvas, J. E. Martinez-Legaz and J. P. Penot, Generalized Convexity and Generalized Monotonicity,, Lecture Notes in Economics and Mathematical Systems, (2001).  doi: 10.1007/978-3-642-56645-5.  Google Scholar

[15]

R. Horst and H. Tuy, Global Optimization: Deterministic Approaches,, Springer, (1993).  doi: 10.1007/978-3-662-02947-3.  Google Scholar

[16]

T. Ibaraki, Parametric approaches to fractional programs,, Mathematical Programming, 26 (1983), 345.  doi: 10.1007/BF02591871.  Google Scholar

[17]

L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER3 Optimal Control Software, Theory and User Manual,, University of Western Australia, (1990).   Google Scholar

[18]

B. Kheirfam, Multi-parametric sensitivity analysis of the constraint matrix in piecewise linear fractional programming,, Journal of Industrial and Management Optimization, 6 (2010), 347.  doi: 10.3934/jimo.2010.6.347.  Google Scholar

[19]

H. Konno and T. Kuno, Generalized linear multiplicative and fractional programming,, Annals of Operations Research, 25 (1990), 147.  doi: 10.1007/BF02283691.  Google Scholar

[20]

Lo and C. MacKinlay, Maximizing predictability in the stock and bond markets,, Macroeconomic Dynamics, 1 (1997), 102.   Google Scholar

[21]

X. J. Long and J. Quan, Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity,, Journal of Industrial and Management Optimization, 1 (2011), 361.  doi: 10.3934/naco.2011.1.361.  Google Scholar

[22]

Cs. Meszaros and T. Rapcsak, On sensitivity analysis for a class of decision systems,, Decision Support Systems, 16 (1996), 231.   Google Scholar

[23]

H. Nicolas, K. Sandar and S. Siegfried, Handbook of Generalized Convexity and Generalized Monotonicity,, Springer, (2005).  doi: 10.1007/b101428.  Google Scholar

[24]

S. Schaible, Fractional programming: Applications and algorithms,, European Journal of Operational Research, 7 (1981), 111.  doi: 10.1016/0377-2217(81)90272-1.  Google Scholar

[25]

K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, 1st Edition, (1991).   Google Scholar

[26]

J.-F. Tsai, Global optimization of nonlinear fractional programming problems in engineering design,, Engineering Optimization, 37 (2005), 399.  doi: 10.1080/03052150500066737.  Google Scholar

[27]

A. Zhang and S. Hayashi, Celis-Dennis-Tapia based approach to quadratic fractional programming problems with two quadratic constraints,, Journal of Industrial and Management Optimization, 1 (2011), 83.  doi: 10.3934/naco.2011.1.83.  Google Scholar

show all references

References:
[1]

N. U. Ahmed, Dynamic Systems and Control with Applications,, World Scientific, (2006).  doi: 10.1142/6262.  Google Scholar

[2]

Y. Almogy and O. Levin, A class of fractional programming problems,, Operations Research, 19 (1971), 57.  doi: 10.1287/opre.19.1.57.  Google Scholar

[3]

C. R. Bector, Duality in nonlinear fractional programming,, Zeitschrift fur Operations Research, 17 (1973).   Google Scholar

[4]

H. P. Benson, Global optimization algorithm for the nonlinear sum of ratios problems,, Journal of Optimization Theory and Applications, 112 (2002), 1.  doi: 10.1023/A,1013072027218.  Google Scholar

[5]

I. Bykadorov, A. Ellero, S. Funari and E. Moretti, A fractional Optimal Control Problem for Maximizing Advertising Efficiency,, Working Paper n. 158/2007., ().   Google Scholar

[6]

I. Bykadorov, A. Ellero, S. Funari and E. Moretti, Dinkelbach approach to solving a class of fractional optimal control problems,, Journal of Optimization Theory & Applications, 142 (2009), 55.  doi: 10.1007/s10957-009-9540-5.  Google Scholar

[7]

A. Cambini, E. Castagnoli, L. Martein, P. Mazzoleni and S. Schaible, Generalized Convexity and Fractional Programming with Economic Applications,, Lecture Notes in Economics and Mathematical Systems, (1990).  doi: 10.1007/978-3-642-46709-7.  Google Scholar

[8]

B. D. Craven, fractional Programming,, Sigma Series in Aplied Mathematics, (1988).   Google Scholar

[9]

J. P. Crouzeix, J. A. Ferland and S. Schaible, Duality in generalized linear fractional programming,, Mathematical Programming, 27 (1983), 342.  doi: 10.1007/BF02591908.  Google Scholar

[10]

W. Dinkelbach, On nonlinear fractional programming,, Management Science, 13 (1967), 492.  doi: 10.1287/mnsc.13.7.492.  Google Scholar

[11]

W. K. Donald, The Walrasion Vision of the Microeconomy,, The university of Michigan Press, (1994).   Google Scholar

[12]

R. Enkhbat, Quasiconvex progarmming,, Lambert Publisher, (2009).   Google Scholar

[13]

R. Enkhbat and T. Ibaraki, On the maximization and minimization of quasiconvex function,, International Journal of Nonlinear and Convex Analysis, 4 (2003), 43.   Google Scholar

[14]

N. Hadjisavvas, J. E. Martinez-Legaz and J. P. Penot, Generalized Convexity and Generalized Monotonicity,, Lecture Notes in Economics and Mathematical Systems, (2001).  doi: 10.1007/978-3-642-56645-5.  Google Scholar

[15]

R. Horst and H. Tuy, Global Optimization: Deterministic Approaches,, Springer, (1993).  doi: 10.1007/978-3-662-02947-3.  Google Scholar

[16]

T. Ibaraki, Parametric approaches to fractional programs,, Mathematical Programming, 26 (1983), 345.  doi: 10.1007/BF02591871.  Google Scholar

[17]

L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, MISER3 Optimal Control Software, Theory and User Manual,, University of Western Australia, (1990).   Google Scholar

[18]

B. Kheirfam, Multi-parametric sensitivity analysis of the constraint matrix in piecewise linear fractional programming,, Journal of Industrial and Management Optimization, 6 (2010), 347.  doi: 10.3934/jimo.2010.6.347.  Google Scholar

[19]

H. Konno and T. Kuno, Generalized linear multiplicative and fractional programming,, Annals of Operations Research, 25 (1990), 147.  doi: 10.1007/BF02283691.  Google Scholar

[20]

Lo and C. MacKinlay, Maximizing predictability in the stock and bond markets,, Macroeconomic Dynamics, 1 (1997), 102.   Google Scholar

[21]

X. J. Long and J. Quan, Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity,, Journal of Industrial and Management Optimization, 1 (2011), 361.  doi: 10.3934/naco.2011.1.361.  Google Scholar

[22]

Cs. Meszaros and T. Rapcsak, On sensitivity analysis for a class of decision systems,, Decision Support Systems, 16 (1996), 231.   Google Scholar

[23]

H. Nicolas, K. Sandar and S. Siegfried, Handbook of Generalized Convexity and Generalized Monotonicity,, Springer, (2005).  doi: 10.1007/b101428.  Google Scholar

[24]

S. Schaible, Fractional programming: Applications and algorithms,, European Journal of Operational Research, 7 (1981), 111.  doi: 10.1016/0377-2217(81)90272-1.  Google Scholar

[25]

K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, 1st Edition, (1991).   Google Scholar

[26]

J.-F. Tsai, Global optimization of nonlinear fractional programming problems in engineering design,, Engineering Optimization, 37 (2005), 399.  doi: 10.1080/03052150500066737.  Google Scholar

[27]

A. Zhang and S. Hayashi, Celis-Dennis-Tapia based approach to quadratic fractional programming problems with two quadratic constraints,, Journal of Industrial and Management Optimization, 1 (2011), 83.  doi: 10.3934/naco.2011.1.83.  Google Scholar

[1]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[2]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[3]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[4]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[5]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[6]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[7]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[8]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[9]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[10]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[11]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[12]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[13]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[14]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[15]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[16]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[17]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[18]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[19]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[20]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]