-
Previous Article
Variable fractional delay filter design with discrete coefficients
- JIMO Home
- This Issue
- Next Article
An improved approximation scheme for scheduling a maintenance and proportional deteriorating jobs
1. | LCOMS EA 7306, Université de Lorraine, 57000 Metz, France |
2. | School of Economics, Ashkelon Academic College, Ashkelon, 78211, Israel |
References:
[1] |
S. Gawiejnowicz, Scheduling deteriorating jobs subject to job or machine availability constraints,, European Journal of Operational Research, 180 (2007), 472.
doi: 10.1016/j.ejor.2006.04.021. |
[2] |
S. Gawiejnowicz, Time-Dependent Scheduling,, EATC Monograph in Theoretical Computer Science, (2008).
|
[3] |
S. Gawiejnowicz and A. Kononov, Complexity and approximability of scheduling resumable proportionally deteriorating jobs,, European Journal of Operational Research, 200 (2010), 305.
doi: 10.1016/j.ejor.2008.12.014. |
[4] |
G. Gens and E. Levner, Fast approximation algorithm for job sequencing with deadlines,, Discrete Applied Mathematics, 3 (1981), 313.
doi: 10.1016/0166-218X(81)90008-1. |
[5] |
M. Ji, Y. He and T. C. E. Cheng, Scheduling linear deteriorating jobs with an availability constraint on a single machine,, Theoretical Computer Science, 362 (2006), 115.
doi: 10.1016/j.tcs.2006.06.006. |
[6] |
H. Kellerer, K. Rustogi and V. A. Strusevich, Approximation schemes for scheduling on a single machine subject to cumulative deterioration and maintenance,, Journal of Scheduling, 16 (2013), 675.
doi: 10.1007/s10951-012-0287-8. |
[7] |
C.-Y. Lee, Machine scheduling with an availability constraint,, Journal of Global Optimization, 9 (1996), 395.
doi: 10.1007/BF00121681. |
[8] |
W. Luo and L. Chen, Approximation schemes for scheduling a maintenance and linear deteriorating jobs,, Journal of Industrial and Management Optimization, 8 (2012), 271.
doi: 10.3934/jimo.2012.8.271. |
[9] |
K. M. Ocetkiewicz, A FPTAS for minimizing total completion time in a single machine time-dependent scheduling problem,, European Journal of Operational Research, 203 (2010), 316.
doi: 10.1016/j.ejor.2009.07.025. |
[10] |
G. J. Woeginger, When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)?,, INFORMS Journal on Computing, 12 (2000), 57.
doi: 10.1287/ijoc.12.1.57.11901. |
[11] |
C.-C. Wu and W.-C. Lee, Scheduling linear deteriorating jobs to minimize makespan with an unavailability constraint on a single machine,, Information Processing Letters, 87 (2003), 89.
doi: 10.1016/S0020-0190(03)00262-X. |
show all references
References:
[1] |
S. Gawiejnowicz, Scheduling deteriorating jobs subject to job or machine availability constraints,, European Journal of Operational Research, 180 (2007), 472.
doi: 10.1016/j.ejor.2006.04.021. |
[2] |
S. Gawiejnowicz, Time-Dependent Scheduling,, EATC Monograph in Theoretical Computer Science, (2008).
|
[3] |
S. Gawiejnowicz and A. Kononov, Complexity and approximability of scheduling resumable proportionally deteriorating jobs,, European Journal of Operational Research, 200 (2010), 305.
doi: 10.1016/j.ejor.2008.12.014. |
[4] |
G. Gens and E. Levner, Fast approximation algorithm for job sequencing with deadlines,, Discrete Applied Mathematics, 3 (1981), 313.
doi: 10.1016/0166-218X(81)90008-1. |
[5] |
M. Ji, Y. He and T. C. E. Cheng, Scheduling linear deteriorating jobs with an availability constraint on a single machine,, Theoretical Computer Science, 362 (2006), 115.
doi: 10.1016/j.tcs.2006.06.006. |
[6] |
H. Kellerer, K. Rustogi and V. A. Strusevich, Approximation schemes for scheduling on a single machine subject to cumulative deterioration and maintenance,, Journal of Scheduling, 16 (2013), 675.
doi: 10.1007/s10951-012-0287-8. |
[7] |
C.-Y. Lee, Machine scheduling with an availability constraint,, Journal of Global Optimization, 9 (1996), 395.
doi: 10.1007/BF00121681. |
[8] |
W. Luo and L. Chen, Approximation schemes for scheduling a maintenance and linear deteriorating jobs,, Journal of Industrial and Management Optimization, 8 (2012), 271.
doi: 10.3934/jimo.2012.8.271. |
[9] |
K. M. Ocetkiewicz, A FPTAS for minimizing total completion time in a single machine time-dependent scheduling problem,, European Journal of Operational Research, 203 (2010), 316.
doi: 10.1016/j.ejor.2009.07.025. |
[10] |
G. J. Woeginger, When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)?,, INFORMS Journal on Computing, 12 (2000), 57.
doi: 10.1287/ijoc.12.1.57.11901. |
[11] |
C.-C. Wu and W.-C. Lee, Scheduling linear deteriorating jobs to minimize makespan with an unavailability constraint on a single machine,, Information Processing Letters, 87 (2003), 89.
doi: 10.1016/S0020-0190(03)00262-X. |
[1] |
Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020127 |
[2] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[3] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[4] |
Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321 |
[5] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[6] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[7] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[8] |
Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409 |
[9] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[10] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[11] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[12] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[13] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[14] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[15] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]