• Previous Article
    Auction games for coordination of large-scale elastic loads in deregulated electricity markets
  • JIMO Home
  • This Issue
  • Next Article
    An improved approximation scheme for scheduling a maintenance and proportional deteriorating jobs
July  2016, 12(3): 819-831. doi: 10.3934/jimo.2016.12.819

Variable fractional delay filter design with discrete coefficients

1. 

Dept. of Mathematics and Statistics, Curtin University of Technology, Perth, Australia, Australia

Received  May 2014 Revised  June 2014 Published  September 2015

This paper investigates the optimal design of variable fractional delay (VFD) filter with discrete coefficients as a means of achieving low complexity and efficient hardware implementation. The filter coefficients are expressed as the sum of signed power-of-two (SPT) terms with a restriction on the total number of power-of-two terms. An optimization problem with least squares criterion is formulated as a mixed-integer programming problem. An optimal scaling factor quantization scheme is applied to the problem resulting in an optimal scaling factor quantized solution. This solution is then improved further by applying a discrete filled function, that has been extended for a mixed integer optimization problem. To apply the discrete filled function method, it requires multiple calculations of the objective function around the neighborhood of a searched point. Thus, an updating scheme is developed to efficiently calculate the objective function in a neighborhood of a point. Design examples demonstrate the effectiveness of the proposed optimization approach.
Citation: Hai Huyen Dam, Kok Lay Teo. Variable fractional delay filter design with discrete coefficients. Journal of Industrial and Management Optimization, 2016, 12 (3) : 819-831. doi: 10.3934/jimo.2016.12.819
References:
[1]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, Variable digital filter with least square criterion and peak gain constraints, IEEE Trans. Circuits Systems II, 54 (2007), 24-28.

[2]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, Variable digital filter with group delay flatness specification or phase constraints, IEEE Trans. Circuits Systems II, 55 (2008), 442-446.

[3]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, FIR variable digital filter with signed power-of-two coefficients, IEEE Trans. Circuits Systems I, 54 (2007), 1348-1357. doi: 10.1109/TCSI.2007.897775.

[4]

H. H. Dam, Design of allpass variable fractional delay filter with powers-of-two coefficients, IEEE Signal Processing Letters, 22 (2015), 1643-1646. doi: 10.1109/LSP.2015.2420652.

[5]

H. H. Dam, Design of variable fractional delay filter with fractional delay constraints, IEEE Signal Processing Letters, 21 (2014), 1361-1364. doi: 10.1109/LSP.2014.2336662.

[6]

H. H. Dam and K. L. Teo, Allpass VFD filter design, IEEE Trans. Signal Processing, 58 (2010), 4432-4436. doi: 10.1109/TSP.2010.2048316.

[7]

H. H. Dam, Variable Fractional Delay Filter with Sub-Expressions Coefficients, International Journal of Innovative Computing, Information and Control, 9 (2013), 2995-3003.

[8]

T.-B. Deng and S. Chivapreecha, Bi-minimax design of even-order variable fractional-delay FIR digital filters, IEEE Trans. Circuits Systems I: Reg. Paper, 59 (2012), 1766-1774. doi: 10.1109/TCSI.2011.2180431.

[9]

T.-B. Deng and W. Qin, Coefficient relation-based minimax design and low-complexity structure of variable fractional-delay digital filters, Signal Processing, 93 (2013), 923-932. doi: 10.1016/j.sigpro.2012.11.004.

[10]

T.-B. Deng, Decoupling minimax design of low-complexity variable fractional-delay FIR digital filters, IEEE Trans. Circuits Syst. I: Reg. Papers, 58 (2011), 2398-2408. doi: 10.1109/TCSI.2011.2123510.

[11]

C. W. Farrow, A continuously variable digital delay element, in Proc. IEEE Int. Symp. Circuits Syst., Vol. 3, IEEE, 1988, 2641-2645. doi: 10.1109/ISCAS.1988.15483.

[12]

Y.-D. Huang, S.-C. Pei and J.-J. Shyu, WLS design of variable fractional-delay FIR filters using coefficient relationship, IEEE Trans. Circuits Systems II: Express Brief, 56 (2009), 220-224.

[13]

D. Li, Y. C. Lim and Y. Lian, A polynomial-time algorithm for designing FIR filters with power-of-two coefficients, IEEE Trans. Signal Processing, 50 (2002), 1935-1941.

[14]

Y. C. Lim, Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude, in IEEE Trans. Circuits Systems, 37 (1990), 1480-1486. doi: 10.1109/31.101268.

[15]

H. Lin, Y. Wang and X. Wang, An auxiliary function method for global minimization in integer programming, Mathematical Problems in Engineering, 2011 (2011), 1-13. doi: 10.1155/2011/402437.

[16]

C. K. S. Pun, Y. C. Wu, S. C. Chan and K. L. Ho, On the design and efficient implementation of the Farrow structure, IEEE Signal Processing Letters, 10 (2003), 189-192. doi: 10.1109/LSP.2003.813681.

show all references

References:
[1]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, Variable digital filter with least square criterion and peak gain constraints, IEEE Trans. Circuits Systems II, 54 (2007), 24-28.

[2]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, Variable digital filter with group delay flatness specification or phase constraints, IEEE Trans. Circuits Systems II, 55 (2008), 442-446.

[3]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, FIR variable digital filter with signed power-of-two coefficients, IEEE Trans. Circuits Systems I, 54 (2007), 1348-1357. doi: 10.1109/TCSI.2007.897775.

[4]

H. H. Dam, Design of allpass variable fractional delay filter with powers-of-two coefficients, IEEE Signal Processing Letters, 22 (2015), 1643-1646. doi: 10.1109/LSP.2015.2420652.

[5]

H. H. Dam, Design of variable fractional delay filter with fractional delay constraints, IEEE Signal Processing Letters, 21 (2014), 1361-1364. doi: 10.1109/LSP.2014.2336662.

[6]

H. H. Dam and K. L. Teo, Allpass VFD filter design, IEEE Trans. Signal Processing, 58 (2010), 4432-4436. doi: 10.1109/TSP.2010.2048316.

[7]

H. H. Dam, Variable Fractional Delay Filter with Sub-Expressions Coefficients, International Journal of Innovative Computing, Information and Control, 9 (2013), 2995-3003.

[8]

T.-B. Deng and S. Chivapreecha, Bi-minimax design of even-order variable fractional-delay FIR digital filters, IEEE Trans. Circuits Systems I: Reg. Paper, 59 (2012), 1766-1774. doi: 10.1109/TCSI.2011.2180431.

[9]

T.-B. Deng and W. Qin, Coefficient relation-based minimax design and low-complexity structure of variable fractional-delay digital filters, Signal Processing, 93 (2013), 923-932. doi: 10.1016/j.sigpro.2012.11.004.

[10]

T.-B. Deng, Decoupling minimax design of low-complexity variable fractional-delay FIR digital filters, IEEE Trans. Circuits Syst. I: Reg. Papers, 58 (2011), 2398-2408. doi: 10.1109/TCSI.2011.2123510.

[11]

C. W. Farrow, A continuously variable digital delay element, in Proc. IEEE Int. Symp. Circuits Syst., Vol. 3, IEEE, 1988, 2641-2645. doi: 10.1109/ISCAS.1988.15483.

[12]

Y.-D. Huang, S.-C. Pei and J.-J. Shyu, WLS design of variable fractional-delay FIR filters using coefficient relationship, IEEE Trans. Circuits Systems II: Express Brief, 56 (2009), 220-224.

[13]

D. Li, Y. C. Lim and Y. Lian, A polynomial-time algorithm for designing FIR filters with power-of-two coefficients, IEEE Trans. Signal Processing, 50 (2002), 1935-1941.

[14]

Y. C. Lim, Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude, in IEEE Trans. Circuits Systems, 37 (1990), 1480-1486. doi: 10.1109/31.101268.

[15]

H. Lin, Y. Wang and X. Wang, An auxiliary function method for global minimization in integer programming, Mathematical Problems in Engineering, 2011 (2011), 1-13. doi: 10.1155/2011/402437.

[16]

C. K. S. Pun, Y. C. Wu, S. C. Chan and K. L. Ho, On the design and efficient implementation of the Farrow structure, IEEE Signal Processing Letters, 10 (2003), 189-192. doi: 10.1109/LSP.2003.813681.

[1]

Bin Li, Hai Huyen Dam, Antonio Cantoni. A global optimal zero-forcing Beamformer design with signed power-of-two coefficients. Journal of Industrial and Management Optimization, 2016, 12 (2) : 595-607. doi: 10.3934/jimo.2016.12.595

[2]

Jamel Ben Amara, Emna Beldi. Simultaneous controllability of two vibrating strings with variable coefficients. Evolution Equations and Control Theory, 2019, 8 (4) : 687-694. doi: 10.3934/eect.2019032

[3]

Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial and Management Optimization, 2008, 4 (2) : 353-362. doi: 10.3934/jimo.2008.4.353

[4]

Liuyang Yuan, Zhongping Wan, Jingjing Zhang, Bin Sun. A filled function method for solving nonlinear complementarity problem. Journal of Industrial and Management Optimization, 2009, 5 (4) : 911-928. doi: 10.3934/jimo.2009.5.911

[5]

Deqiang Qu, Youlin Shang, Dan Wu, Guanglei Sun. Filled function method to optimize supply chain transportation costs. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021115

[6]

Mahmoud Abouagwa, Ji Li. G-neutral stochastic differential equations with variable delay and non-Lipschitz coefficients. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1583-1606. doi: 10.3934/dcdsb.2019241

[7]

Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052

[8]

Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2475-2487. doi: 10.3934/dcdss.2020139

[9]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

[10]

Antonio Coronel-Escamilla, José Francisco Gómez-Aguilar. A novel predictor-corrector scheme for solving variable-order fractional delay differential equations involving operators with Mittag-Leffler kernel. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 561-574. doi: 10.3934/dcdss.2020031

[11]

Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations and Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020

[12]

Fágner D. Araruna, Flank D. M. Bezerra, Milton L. Oliveira. Rate of attraction for a semilinear thermoelastic system with variable coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3211-3226. doi: 10.3934/dcdsb.2018316

[13]

Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure and Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098

[14]

Nguyen Huy Tuan, Tran Ngoc Thach, Yong Zhou. On a backward problem for two-dimensional time fractional wave equation with discrete random data. Evolution Equations and Control Theory, 2020, 9 (2) : 561-579. doi: 10.3934/eect.2020024

[15]

Li Li. An inverse problem for a fractional diffusion equation with fractional power type nonlinearities. Inverse Problems and Imaging, 2022, 16 (3) : 613-624. doi: 10.3934/ipi.2021064

[16]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. Determination of initial data for a reaction-diffusion system with variable coefficients. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 771-801. doi: 10.3934/dcds.2019032

[17]

Stephanie Flores, Elijah Hight, Everardo Olivares-Vargas, Tamer Oraby, Jose Palacio, Erwin Suazo, Jasang Yoon. Exact and numerical solution of stochastic Burgers equations with variable coefficients. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2735-2750. doi: 10.3934/dcdss.2020224

[18]

Takahiro Hashimoto. Nonexistence of weak solutions of quasilinear elliptic equations with variable coefficients. Conference Publications, 2009, 2009 (Special) : 349-358. doi: 10.3934/proc.2009.2009.349

[19]

Shikuan Mao, Yongqin Liu. Decay property for solutions to plate type equations with variable coefficients. Kinetic and Related Models, 2017, 10 (3) : 785-797. doi: 10.3934/krm.2017031

[20]

M. Eller, Roberto Triggiani. Exact/approximate controllability of thermoelastic plates with variable thermal coefficients. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 283-302. doi: 10.3934/dcds.2001.7.283

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]