-
Previous Article
Auction games for coordination of large-scale elastic loads in deregulated electricity markets
- JIMO Home
- This Issue
-
Next Article
An improved approximation scheme for scheduling a maintenance and proportional deteriorating jobs
Variable fractional delay filter design with discrete coefficients
1. | Dept. of Mathematics and Statistics, Curtin University of Technology, Perth, Australia, Australia |
References:
[1] |
H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, Variable digital filter with least square criterion and peak gain constraints,, IEEE Trans. Circuits Systems II, 54 (2007), 24. Google Scholar |
[2] |
H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, Variable digital filter with group delay flatness specification or phase constraints,, IEEE Trans. Circuits Systems II, 55 (2008), 442. Google Scholar |
[3] |
H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, FIR variable digital filter with signed power-of-two coefficients,, IEEE Trans. Circuits Systems I, 54 (2007), 1348.
doi: 10.1109/TCSI.2007.897775. |
[4] |
H. H. Dam, Design of allpass variable fractional delay filter with powers-of-two coefficients,, IEEE Signal Processing Letters, 22 (2015), 1643.
doi: 10.1109/LSP.2015.2420652. |
[5] |
H. H. Dam, Design of variable fractional delay filter with fractional delay constraints,, IEEE Signal Processing Letters, 21 (2014), 1361.
doi: 10.1109/LSP.2014.2336662. |
[6] |
H. H. Dam and K. L. Teo, Allpass VFD filter design,, IEEE Trans. Signal Processing, 58 (2010), 4432.
doi: 10.1109/TSP.2010.2048316. |
[7] |
H. H. Dam, Variable Fractional Delay Filter with Sub-Expressions Coefficients,, International Journal of Innovative Computing, 9 (2013), 2995. Google Scholar |
[8] |
T.-B. Deng and S. Chivapreecha, Bi-minimax design of even-order variable fractional-delay FIR digital filters,, IEEE Trans. Circuits Systems I: Reg. Paper, 59 (2012), 1766.
doi: 10.1109/TCSI.2011.2180431. |
[9] |
T.-B. Deng and W. Qin, Coefficient relation-based minimax design and low-complexity structure of variable fractional-delay digital filters,, Signal Processing, 93 (2013), 923.
doi: 10.1016/j.sigpro.2012.11.004. |
[10] |
T.-B. Deng, Decoupling minimax design of low-complexity variable fractional-delay FIR digital filters,, IEEE Trans. Circuits Syst. I: Reg. Papers, 58 (2011), 2398.
doi: 10.1109/TCSI.2011.2123510. |
[11] |
C. W. Farrow, A continuously variable digital delay element,, in Proc. IEEE Int. Symp. Circuits Syst., (1988), 2641.
doi: 10.1109/ISCAS.1988.15483. |
[12] |
Y.-D. Huang, S.-C. Pei and J.-J. Shyu, WLS design of variable fractional-delay FIR filters using coefficient relationship,, IEEE Trans. Circuits Systems II: Express Brief, 56 (2009), 220. Google Scholar |
[13] |
D. Li, Y. C. Lim and Y. Lian, A polynomial-time algorithm for designing FIR filters with power-of-two coefficients,, IEEE Trans. Signal Processing, 50 (2002), 1935. Google Scholar |
[14] |
Y. C. Lim, Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude,, in IEEE Trans. Circuits Systems, 37 (1990), 1480.
doi: 10.1109/31.101268. |
[15] |
H. Lin, Y. Wang and X. Wang, An auxiliary function method for global minimization in integer programming,, Mathematical Problems in Engineering, 2011 (2011), 1.
doi: 10.1155/2011/402437. |
[16] |
C. K. S. Pun, Y. C. Wu, S. C. Chan and K. L. Ho, On the design and efficient implementation of the Farrow structure,, IEEE Signal Processing Letters, 10 (2003), 189.
doi: 10.1109/LSP.2003.813681. |
show all references
References:
[1] |
H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, Variable digital filter with least square criterion and peak gain constraints,, IEEE Trans. Circuits Systems II, 54 (2007), 24. Google Scholar |
[2] |
H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, Variable digital filter with group delay flatness specification or phase constraints,, IEEE Trans. Circuits Systems II, 55 (2008), 442. Google Scholar |
[3] |
H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, FIR variable digital filter with signed power-of-two coefficients,, IEEE Trans. Circuits Systems I, 54 (2007), 1348.
doi: 10.1109/TCSI.2007.897775. |
[4] |
H. H. Dam, Design of allpass variable fractional delay filter with powers-of-two coefficients,, IEEE Signal Processing Letters, 22 (2015), 1643.
doi: 10.1109/LSP.2015.2420652. |
[5] |
H. H. Dam, Design of variable fractional delay filter with fractional delay constraints,, IEEE Signal Processing Letters, 21 (2014), 1361.
doi: 10.1109/LSP.2014.2336662. |
[6] |
H. H. Dam and K. L. Teo, Allpass VFD filter design,, IEEE Trans. Signal Processing, 58 (2010), 4432.
doi: 10.1109/TSP.2010.2048316. |
[7] |
H. H. Dam, Variable Fractional Delay Filter with Sub-Expressions Coefficients,, International Journal of Innovative Computing, 9 (2013), 2995. Google Scholar |
[8] |
T.-B. Deng and S. Chivapreecha, Bi-minimax design of even-order variable fractional-delay FIR digital filters,, IEEE Trans. Circuits Systems I: Reg. Paper, 59 (2012), 1766.
doi: 10.1109/TCSI.2011.2180431. |
[9] |
T.-B. Deng and W. Qin, Coefficient relation-based minimax design and low-complexity structure of variable fractional-delay digital filters,, Signal Processing, 93 (2013), 923.
doi: 10.1016/j.sigpro.2012.11.004. |
[10] |
T.-B. Deng, Decoupling minimax design of low-complexity variable fractional-delay FIR digital filters,, IEEE Trans. Circuits Syst. I: Reg. Papers, 58 (2011), 2398.
doi: 10.1109/TCSI.2011.2123510. |
[11] |
C. W. Farrow, A continuously variable digital delay element,, in Proc. IEEE Int. Symp. Circuits Syst., (1988), 2641.
doi: 10.1109/ISCAS.1988.15483. |
[12] |
Y.-D. Huang, S.-C. Pei and J.-J. Shyu, WLS design of variable fractional-delay FIR filters using coefficient relationship,, IEEE Trans. Circuits Systems II: Express Brief, 56 (2009), 220. Google Scholar |
[13] |
D. Li, Y. C. Lim and Y. Lian, A polynomial-time algorithm for designing FIR filters with power-of-two coefficients,, IEEE Trans. Signal Processing, 50 (2002), 1935. Google Scholar |
[14] |
Y. C. Lim, Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude,, in IEEE Trans. Circuits Systems, 37 (1990), 1480.
doi: 10.1109/31.101268. |
[15] |
H. Lin, Y. Wang and X. Wang, An auxiliary function method for global minimization in integer programming,, Mathematical Problems in Engineering, 2011 (2011), 1.
doi: 10.1155/2011/402437. |
[16] |
C. K. S. Pun, Y. C. Wu, S. C. Chan and K. L. Ho, On the design and efficient implementation of the Farrow structure,, IEEE Signal Processing Letters, 10 (2003), 189.
doi: 10.1109/LSP.2003.813681. |
[1] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[2] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[3] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[4] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[5] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[6] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[7] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[8] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[9] |
Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024 |
[10] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[11] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020027 |
[12] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[13] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[14] |
Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931 |
[15] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[16] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[17] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[18] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[19] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[20] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]