• Previous Article
    Auction games for coordination of large-scale elastic loads in deregulated electricity markets
  • JIMO Home
  • This Issue
  • Next Article
    An improved approximation scheme for scheduling a maintenance and proportional deteriorating jobs
July  2016, 12(3): 819-831. doi: 10.3934/jimo.2016.12.819

Variable fractional delay filter design with discrete coefficients

1. 

Dept. of Mathematics and Statistics, Curtin University of Technology, Perth, Australia, Australia

Received  May 2014 Revised  June 2014 Published  September 2015

This paper investigates the optimal design of variable fractional delay (VFD) filter with discrete coefficients as a means of achieving low complexity and efficient hardware implementation. The filter coefficients are expressed as the sum of signed power-of-two (SPT) terms with a restriction on the total number of power-of-two terms. An optimization problem with least squares criterion is formulated as a mixed-integer programming problem. An optimal scaling factor quantization scheme is applied to the problem resulting in an optimal scaling factor quantized solution. This solution is then improved further by applying a discrete filled function, that has been extended for a mixed integer optimization problem. To apply the discrete filled function method, it requires multiple calculations of the objective function around the neighborhood of a searched point. Thus, an updating scheme is developed to efficiently calculate the objective function in a neighborhood of a point. Design examples demonstrate the effectiveness of the proposed optimization approach.
Citation: Hai Huyen Dam, Kok Lay Teo. Variable fractional delay filter design with discrete coefficients. Journal of Industrial & Management Optimization, 2016, 12 (3) : 819-831. doi: 10.3934/jimo.2016.12.819
References:
[1]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, Variable digital filter with least square criterion and peak gain constraints,, IEEE Trans. Circuits Systems II, 54 (2007), 24.   Google Scholar

[2]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, Variable digital filter with group delay flatness specification or phase constraints,, IEEE Trans. Circuits Systems II, 55 (2008), 442.   Google Scholar

[3]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, FIR variable digital filter with signed power-of-two coefficients,, IEEE Trans. Circuits Systems I, 54 (2007), 1348.  doi: 10.1109/TCSI.2007.897775.  Google Scholar

[4]

H. H. Dam, Design of allpass variable fractional delay filter with powers-of-two coefficients,, IEEE Signal Processing Letters, 22 (2015), 1643.  doi: 10.1109/LSP.2015.2420652.  Google Scholar

[5]

H. H. Dam, Design of variable fractional delay filter with fractional delay constraints,, IEEE Signal Processing Letters, 21 (2014), 1361.  doi: 10.1109/LSP.2014.2336662.  Google Scholar

[6]

H. H. Dam and K. L. Teo, Allpass VFD filter design,, IEEE Trans. Signal Processing, 58 (2010), 4432.  doi: 10.1109/TSP.2010.2048316.  Google Scholar

[7]

H. H. Dam, Variable Fractional Delay Filter with Sub-Expressions Coefficients,, International Journal of Innovative Computing, 9 (2013), 2995.   Google Scholar

[8]

T.-B. Deng and S. Chivapreecha, Bi-minimax design of even-order variable fractional-delay FIR digital filters,, IEEE Trans. Circuits Systems I: Reg. Paper, 59 (2012), 1766.  doi: 10.1109/TCSI.2011.2180431.  Google Scholar

[9]

T.-B. Deng and W. Qin, Coefficient relation-based minimax design and low-complexity structure of variable fractional-delay digital filters,, Signal Processing, 93 (2013), 923.  doi: 10.1016/j.sigpro.2012.11.004.  Google Scholar

[10]

T.-B. Deng, Decoupling minimax design of low-complexity variable fractional-delay FIR digital filters,, IEEE Trans. Circuits Syst. I: Reg. Papers, 58 (2011), 2398.  doi: 10.1109/TCSI.2011.2123510.  Google Scholar

[11]

C. W. Farrow, A continuously variable digital delay element,, in Proc. IEEE Int. Symp. Circuits Syst., (1988), 2641.  doi: 10.1109/ISCAS.1988.15483.  Google Scholar

[12]

Y.-D. Huang, S.-C. Pei and J.-J. Shyu, WLS design of variable fractional-delay FIR filters using coefficient relationship,, IEEE Trans. Circuits Systems II: Express Brief, 56 (2009), 220.   Google Scholar

[13]

D. Li, Y. C. Lim and Y. Lian, A polynomial-time algorithm for designing FIR filters with power-of-two coefficients,, IEEE Trans. Signal Processing, 50 (2002), 1935.   Google Scholar

[14]

Y. C. Lim, Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude,, in IEEE Trans. Circuits Systems, 37 (1990), 1480.  doi: 10.1109/31.101268.  Google Scholar

[15]

H. Lin, Y. Wang and X. Wang, An auxiliary function method for global minimization in integer programming,, Mathematical Problems in Engineering, 2011 (2011), 1.  doi: 10.1155/2011/402437.  Google Scholar

[16]

C. K. S. Pun, Y. C. Wu, S. C. Chan and K. L. Ho, On the design and efficient implementation of the Farrow structure,, IEEE Signal Processing Letters, 10 (2003), 189.  doi: 10.1109/LSP.2003.813681.  Google Scholar

show all references

References:
[1]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, Variable digital filter with least square criterion and peak gain constraints,, IEEE Trans. Circuits Systems II, 54 (2007), 24.   Google Scholar

[2]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, Variable digital filter with group delay flatness specification or phase constraints,, IEEE Trans. Circuits Systems II, 55 (2008), 442.   Google Scholar

[3]

H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm, FIR variable digital filter with signed power-of-two coefficients,, IEEE Trans. Circuits Systems I, 54 (2007), 1348.  doi: 10.1109/TCSI.2007.897775.  Google Scholar

[4]

H. H. Dam, Design of allpass variable fractional delay filter with powers-of-two coefficients,, IEEE Signal Processing Letters, 22 (2015), 1643.  doi: 10.1109/LSP.2015.2420652.  Google Scholar

[5]

H. H. Dam, Design of variable fractional delay filter with fractional delay constraints,, IEEE Signal Processing Letters, 21 (2014), 1361.  doi: 10.1109/LSP.2014.2336662.  Google Scholar

[6]

H. H. Dam and K. L. Teo, Allpass VFD filter design,, IEEE Trans. Signal Processing, 58 (2010), 4432.  doi: 10.1109/TSP.2010.2048316.  Google Scholar

[7]

H. H. Dam, Variable Fractional Delay Filter with Sub-Expressions Coefficients,, International Journal of Innovative Computing, 9 (2013), 2995.   Google Scholar

[8]

T.-B. Deng and S. Chivapreecha, Bi-minimax design of even-order variable fractional-delay FIR digital filters,, IEEE Trans. Circuits Systems I: Reg. Paper, 59 (2012), 1766.  doi: 10.1109/TCSI.2011.2180431.  Google Scholar

[9]

T.-B. Deng and W. Qin, Coefficient relation-based minimax design and low-complexity structure of variable fractional-delay digital filters,, Signal Processing, 93 (2013), 923.  doi: 10.1016/j.sigpro.2012.11.004.  Google Scholar

[10]

T.-B. Deng, Decoupling minimax design of low-complexity variable fractional-delay FIR digital filters,, IEEE Trans. Circuits Syst. I: Reg. Papers, 58 (2011), 2398.  doi: 10.1109/TCSI.2011.2123510.  Google Scholar

[11]

C. W. Farrow, A continuously variable digital delay element,, in Proc. IEEE Int. Symp. Circuits Syst., (1988), 2641.  doi: 10.1109/ISCAS.1988.15483.  Google Scholar

[12]

Y.-D. Huang, S.-C. Pei and J.-J. Shyu, WLS design of variable fractional-delay FIR filters using coefficient relationship,, IEEE Trans. Circuits Systems II: Express Brief, 56 (2009), 220.   Google Scholar

[13]

D. Li, Y. C. Lim and Y. Lian, A polynomial-time algorithm for designing FIR filters with power-of-two coefficients,, IEEE Trans. Signal Processing, 50 (2002), 1935.   Google Scholar

[14]

Y. C. Lim, Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude,, in IEEE Trans. Circuits Systems, 37 (1990), 1480.  doi: 10.1109/31.101268.  Google Scholar

[15]

H. Lin, Y. Wang and X. Wang, An auxiliary function method for global minimization in integer programming,, Mathematical Problems in Engineering, 2011 (2011), 1.  doi: 10.1155/2011/402437.  Google Scholar

[16]

C. K. S. Pun, Y. C. Wu, S. C. Chan and K. L. Ho, On the design and efficient implementation of the Farrow structure,, IEEE Signal Processing Letters, 10 (2003), 189.  doi: 10.1109/LSP.2003.813681.  Google Scholar

[1]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[2]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[3]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[4]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[5]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[6]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[7]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[8]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[9]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[10]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[11]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020027

[12]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[13]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[14]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[15]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[16]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[17]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[18]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[19]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[20]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]