January  2016, 12(1): 83-102. doi: 10.3934/jimo.2016.12.83

The optimal portfolios based on a modified safety-first rule with risk-free saving

1. 

College of Science & Technology, and Faculty of Business, Ningbo University, Ningbo 315211, China

2. 

Southampton Statistical Sciences Research Institute, and School of Mathematical Sciences, University of Southampton, SO17 1BJ, United Kingdom

Received  July 2013 Revised  November 2014 Published  April 2015

How to manage the social security trust funds is a topic of wide interests both academically and professionally. In the setting of portfolio selection with social security funds investment, we propose a modified safety-first (MSF) rule with portfolio selection including risk-free saving. We first demonstrate under some mild assumptions that the solution to the MSF model for an individual investor can be expressed by explicitly analytical formula and the necessary and sufficient conditions for their existence are obtained. We then derive the safety-first efficient frontiers in both the space of expected return and insured return level and the space of standard deviation and expected return, with numerical examples illustrated. By comparing the results of the MSF model with those of the mean-variance (M-V) model, some novel insights into the differences between them are further gained.
Citation: Yuanyao Ding, Zudi Lu. The optimal portfolios based on a modified safety-first rule with risk-free saving. Journal of Industrial & Management Optimization, 2016, 12 (1) : 83-102. doi: 10.3934/jimo.2016.12.83
References:
[1]

F. R. Arzac and V. S. Bawa, Portfolio choice and equilibrium in capital markets with safety first investors,, Journal of Financial Economics, 4 (1977), 277.  doi: 10.1016/0304-405X(77)90003-4.  Google Scholar

[2]

V. S. Bawa, Optimal rules for ordering uncertain prospects,, Journal of Financial Economics, 2 (1975), 95.  doi: 10.1016/0304-405X(75)90025-2.  Google Scholar

[3]

M. C. Chiu and D. Li, Asset-liability management under the safety-first principle,, Optimization Theory and Applications, 143 (2009), 455.  doi: 10.1007/s10957-009-9576-6.  Google Scholar

[4]

S. Das, H. Markowitz, J. Scheid and M. Statman, Portfolio optimization with mental accounts,, Journal of Financial and Quantitative Analysis, 45 (2010), 311.  doi: 10.1017/S0022109010000141.  Google Scholar

[5]

Y. Ding and B. Zhang, Risky asset pricing based on safety first fund management,, Quantitative Finance, 9 (2009), 353.  doi: 10.1080/14697680802392488.  Google Scholar

[6]

Y. Ding and B. Zhang, Optimal portfolio of safety-first models,, Journal of Statistical Planning and Inference, 139 (2009), 2952.  doi: 10.1016/j.jspi.2009.01.018.  Google Scholar

[7]

M. Engels, Portfolio Optimization: Beyond Markowitz,, Master's thesis, (2004).   Google Scholar

[8]

P. C. Fishburn, Mean-risk analysis with risk associated with below-target returns,, American Economical Review, 67 (1977), 116.   Google Scholar

[9]

S. Kataoka, A stochastic programming model,, Econometrica, 31 (1963), 181.  doi: 10.2307/1910956.  Google Scholar

[10]

K. Boda, J. A. Filar, Y. Lin and L. Spanjers, Stochastic target hitting time and the problem of early retirement,, IEEE Transactions on Automatic Control, 49 (2004), 409.  doi: 10.1109/TAC.2004.824469.  Google Scholar

[11]

K. Boda and J. A. Filar, Time consistent dynamic risk measures,, Mathematical Methods of Operations Research, 63 (2006), 169.  doi: 10.1007/s00186-005-0045-1.  Google Scholar

[12]

H. Levy and M. Levy, The safety first expected utility model: Experimental evidence and economic implications,, Journal of Banking & Finance, 33 (2009), 1494.  doi: 10.1016/j.jbankfin.2009.02.014.  Google Scholar

[13]

D. Li, T. F. Chan and W. L. Ng, Safety-first dynamic portfolio selection,, Dynamics of Continuous, 4 (1998), 585.   Google Scholar

[14]

Z. F. Li, J. Yao and D. Li, Behavior patterns of investment strategies under Roy's safety-first principle,, The Quarterly Review of Economics and Finance, 50 (2010), 167.  doi: 10.1016/j.qref.2009.11.004.  Google Scholar

[15]

H. Markowitz, Portfolio selection,, Journal of Finance, 7 (1952), 79.   Google Scholar

[16]

R. C. Merton, An analytic derivation of the efficient portfolio frontier,, The Journal of Financial and Quantitative Analysis, 7 (1972), 1851.  doi: 10.2307/2329621.  Google Scholar

[17]

V. I. Norkin and S. V. Boyko, Safety-First Portfolio Selection,, Cybernetics and Systems Analysis, 48 (2012), 180.  doi: 10.1007/s10559-012-9396-9.  Google Scholar

[18]

L. S. Ortobelli and S. T. Rachev, Safety-first analysis and stable paretian approach to portfolio choice theory,, Mathematical and Computer Modelling, 34 (2001), 1037.  doi: 10.1016/S0895-7177(01)00116-9.  Google Scholar

[19]

L. S. Ortobelli and F. Pellerey, Market stochastic bounds with elliptical distributions,, Journal of Concrete and Applicable Mathematics, 6 (2008), 293.   Google Scholar

[20]

A. D. Roy, Safety-first and the holding of assets,, Econometrica, 20 (1952), 431.  doi: 10.2307/1907413.  Google Scholar

[21]

H. Shefrin and M. Statman, Behavioral portfolio theory,, Journal of Financial and Quantitative Analysis, 35 (2000), 127.  doi: 10.2307/2676187.  Google Scholar

[22]

N. Signer, Safety-first portfolio optimization: Fixed versus random target,, Thuenen-Series of Applied Economic Theory, (2010).   Google Scholar

[23]

L. G. Telser, Safety first and hedging,, Review of Economic Studies, 23 (1955), 1.  doi: 10.2307/2296146.  Google Scholar

[24]

S. M. Zhang, S. Y. Wang and X. T. Deng, Portfolio Selection Theory with Different Interest Rates for Borrowing and Lending,, Journal of Global Optimization, 28 (2004), 67.  doi: 10.1023/B:JOGO.0000006719.64826.55.  Google Scholar

show all references

References:
[1]

F. R. Arzac and V. S. Bawa, Portfolio choice and equilibrium in capital markets with safety first investors,, Journal of Financial Economics, 4 (1977), 277.  doi: 10.1016/0304-405X(77)90003-4.  Google Scholar

[2]

V. S. Bawa, Optimal rules for ordering uncertain prospects,, Journal of Financial Economics, 2 (1975), 95.  doi: 10.1016/0304-405X(75)90025-2.  Google Scholar

[3]

M. C. Chiu and D. Li, Asset-liability management under the safety-first principle,, Optimization Theory and Applications, 143 (2009), 455.  doi: 10.1007/s10957-009-9576-6.  Google Scholar

[4]

S. Das, H. Markowitz, J. Scheid and M. Statman, Portfolio optimization with mental accounts,, Journal of Financial and Quantitative Analysis, 45 (2010), 311.  doi: 10.1017/S0022109010000141.  Google Scholar

[5]

Y. Ding and B. Zhang, Risky asset pricing based on safety first fund management,, Quantitative Finance, 9 (2009), 353.  doi: 10.1080/14697680802392488.  Google Scholar

[6]

Y. Ding and B. Zhang, Optimal portfolio of safety-first models,, Journal of Statistical Planning and Inference, 139 (2009), 2952.  doi: 10.1016/j.jspi.2009.01.018.  Google Scholar

[7]

M. Engels, Portfolio Optimization: Beyond Markowitz,, Master's thesis, (2004).   Google Scholar

[8]

P. C. Fishburn, Mean-risk analysis with risk associated with below-target returns,, American Economical Review, 67 (1977), 116.   Google Scholar

[9]

S. Kataoka, A stochastic programming model,, Econometrica, 31 (1963), 181.  doi: 10.2307/1910956.  Google Scholar

[10]

K. Boda, J. A. Filar, Y. Lin and L. Spanjers, Stochastic target hitting time and the problem of early retirement,, IEEE Transactions on Automatic Control, 49 (2004), 409.  doi: 10.1109/TAC.2004.824469.  Google Scholar

[11]

K. Boda and J. A. Filar, Time consistent dynamic risk measures,, Mathematical Methods of Operations Research, 63 (2006), 169.  doi: 10.1007/s00186-005-0045-1.  Google Scholar

[12]

H. Levy and M. Levy, The safety first expected utility model: Experimental evidence and economic implications,, Journal of Banking & Finance, 33 (2009), 1494.  doi: 10.1016/j.jbankfin.2009.02.014.  Google Scholar

[13]

D. Li, T. F. Chan and W. L. Ng, Safety-first dynamic portfolio selection,, Dynamics of Continuous, 4 (1998), 585.   Google Scholar

[14]

Z. F. Li, J. Yao and D. Li, Behavior patterns of investment strategies under Roy's safety-first principle,, The Quarterly Review of Economics and Finance, 50 (2010), 167.  doi: 10.1016/j.qref.2009.11.004.  Google Scholar

[15]

H. Markowitz, Portfolio selection,, Journal of Finance, 7 (1952), 79.   Google Scholar

[16]

R. C. Merton, An analytic derivation of the efficient portfolio frontier,, The Journal of Financial and Quantitative Analysis, 7 (1972), 1851.  doi: 10.2307/2329621.  Google Scholar

[17]

V. I. Norkin and S. V. Boyko, Safety-First Portfolio Selection,, Cybernetics and Systems Analysis, 48 (2012), 180.  doi: 10.1007/s10559-012-9396-9.  Google Scholar

[18]

L. S. Ortobelli and S. T. Rachev, Safety-first analysis and stable paretian approach to portfolio choice theory,, Mathematical and Computer Modelling, 34 (2001), 1037.  doi: 10.1016/S0895-7177(01)00116-9.  Google Scholar

[19]

L. S. Ortobelli and F. Pellerey, Market stochastic bounds with elliptical distributions,, Journal of Concrete and Applicable Mathematics, 6 (2008), 293.   Google Scholar

[20]

A. D. Roy, Safety-first and the holding of assets,, Econometrica, 20 (1952), 431.  doi: 10.2307/1907413.  Google Scholar

[21]

H. Shefrin and M. Statman, Behavioral portfolio theory,, Journal of Financial and Quantitative Analysis, 35 (2000), 127.  doi: 10.2307/2676187.  Google Scholar

[22]

N. Signer, Safety-first portfolio optimization: Fixed versus random target,, Thuenen-Series of Applied Economic Theory, (2010).   Google Scholar

[23]

L. G. Telser, Safety first and hedging,, Review of Economic Studies, 23 (1955), 1.  doi: 10.2307/2296146.  Google Scholar

[24]

S. M. Zhang, S. Y. Wang and X. T. Deng, Portfolio Selection Theory with Different Interest Rates for Borrowing and Lending,, Journal of Global Optimization, 28 (2004), 67.  doi: 10.1023/B:JOGO.0000006719.64826.55.  Google Scholar

[1]

Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057

[2]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[3]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[4]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[5]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[6]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[7]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[8]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[9]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[10]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[11]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[12]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[13]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[14]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[15]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[16]

Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020127

[17]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[18]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[19]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[20]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (103)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]