-
Previous Article
A full-modified-Newton step infeasible interior-point algorithm for linear optimization
- JIMO Home
- This Issue
-
Next Article
A global optimization approach to fractional optimal control
The optimal portfolios based on a modified safety-first rule with risk-free saving
1. | College of Science & Technology, and Faculty of Business, Ningbo University, Ningbo 315211, China |
2. | Southampton Statistical Sciences Research Institute, and School of Mathematical Sciences, University of Southampton, SO17 1BJ, United Kingdom |
References:
[1] |
F. R. Arzac and V. S. Bawa, Portfolio choice and equilibrium in capital markets with safety first investors,, Journal of Financial Economics, 4 (1977), 277.
doi: 10.1016/0304-405X(77)90003-4. |
[2] |
V. S. Bawa, Optimal rules for ordering uncertain prospects,, Journal of Financial Economics, 2 (1975), 95.
doi: 10.1016/0304-405X(75)90025-2. |
[3] |
M. C. Chiu and D. Li, Asset-liability management under the safety-first principle,, Optimization Theory and Applications, 143 (2009), 455.
doi: 10.1007/s10957-009-9576-6. |
[4] |
S. Das, H. Markowitz, J. Scheid and M. Statman, Portfolio optimization with mental accounts,, Journal of Financial and Quantitative Analysis, 45 (2010), 311.
doi: 10.1017/S0022109010000141. |
[5] |
Y. Ding and B. Zhang, Risky asset pricing based on safety first fund management,, Quantitative Finance, 9 (2009), 353.
doi: 10.1080/14697680802392488. |
[6] |
Y. Ding and B. Zhang, Optimal portfolio of safety-first models,, Journal of Statistical Planning and Inference, 139 (2009), 2952.
doi: 10.1016/j.jspi.2009.01.018. |
[7] |
M. Engels, Portfolio Optimization: Beyond Markowitz,, Master's thesis, (2004). Google Scholar |
[8] |
P. C. Fishburn, Mean-risk analysis with risk associated with below-target returns,, American Economical Review, 67 (1977), 116. Google Scholar |
[9] |
S. Kataoka, A stochastic programming model,, Econometrica, 31 (1963), 181.
doi: 10.2307/1910956. |
[10] |
K. Boda, J. A. Filar, Y. Lin and L. Spanjers, Stochastic target hitting time and the problem of early retirement,, IEEE Transactions on Automatic Control, 49 (2004), 409.
doi: 10.1109/TAC.2004.824469. |
[11] |
K. Boda and J. A. Filar, Time consistent dynamic risk measures,, Mathematical Methods of Operations Research, 63 (2006), 169.
doi: 10.1007/s00186-005-0045-1. |
[12] |
H. Levy and M. Levy, The safety first expected utility model: Experimental evidence and economic implications,, Journal of Banking & Finance, 33 (2009), 1494.
doi: 10.1016/j.jbankfin.2009.02.014. |
[13] |
D. Li, T. F. Chan and W. L. Ng, Safety-first dynamic portfolio selection,, Dynamics of Continuous, 4 (1998), 585.
|
[14] |
Z. F. Li, J. Yao and D. Li, Behavior patterns of investment strategies under Roy's safety-first principle,, The Quarterly Review of Economics and Finance, 50 (2010), 167.
doi: 10.1016/j.qref.2009.11.004. |
[15] |
H. Markowitz, Portfolio selection,, Journal of Finance, 7 (1952), 79. Google Scholar |
[16] |
R. C. Merton, An analytic derivation of the efficient portfolio frontier,, The Journal of Financial and Quantitative Analysis, 7 (1972), 1851.
doi: 10.2307/2329621. |
[17] |
V. I. Norkin and S. V. Boyko, Safety-First Portfolio Selection,, Cybernetics and Systems Analysis, 48 (2012), 180.
doi: 10.1007/s10559-012-9396-9. |
[18] |
L. S. Ortobelli and S. T. Rachev, Safety-first analysis and stable paretian approach to portfolio choice theory,, Mathematical and Computer Modelling, 34 (2001), 1037.
doi: 10.1016/S0895-7177(01)00116-9. |
[19] |
L. S. Ortobelli and F. Pellerey, Market stochastic bounds with elliptical distributions,, Journal of Concrete and Applicable Mathematics, 6 (2008), 293.
|
[20] |
A. D. Roy, Safety-first and the holding of assets,, Econometrica, 20 (1952), 431.
doi: 10.2307/1907413. |
[21] |
H. Shefrin and M. Statman, Behavioral portfolio theory,, Journal of Financial and Quantitative Analysis, 35 (2000), 127.
doi: 10.2307/2676187. |
[22] |
N. Signer, Safety-first portfolio optimization: Fixed versus random target,, Thuenen-Series of Applied Economic Theory, (2010). Google Scholar |
[23] |
L. G. Telser, Safety first and hedging,, Review of Economic Studies, 23 (1955), 1.
doi: 10.2307/2296146. |
[24] |
S. M. Zhang, S. Y. Wang and X. T. Deng, Portfolio Selection Theory with Different Interest Rates for Borrowing and Lending,, Journal of Global Optimization, 28 (2004), 67.
doi: 10.1023/B:JOGO.0000006719.64826.55. |
show all references
References:
[1] |
F. R. Arzac and V. S. Bawa, Portfolio choice and equilibrium in capital markets with safety first investors,, Journal of Financial Economics, 4 (1977), 277.
doi: 10.1016/0304-405X(77)90003-4. |
[2] |
V. S. Bawa, Optimal rules for ordering uncertain prospects,, Journal of Financial Economics, 2 (1975), 95.
doi: 10.1016/0304-405X(75)90025-2. |
[3] |
M. C. Chiu and D. Li, Asset-liability management under the safety-first principle,, Optimization Theory and Applications, 143 (2009), 455.
doi: 10.1007/s10957-009-9576-6. |
[4] |
S. Das, H. Markowitz, J. Scheid and M. Statman, Portfolio optimization with mental accounts,, Journal of Financial and Quantitative Analysis, 45 (2010), 311.
doi: 10.1017/S0022109010000141. |
[5] |
Y. Ding and B. Zhang, Risky asset pricing based on safety first fund management,, Quantitative Finance, 9 (2009), 353.
doi: 10.1080/14697680802392488. |
[6] |
Y. Ding and B. Zhang, Optimal portfolio of safety-first models,, Journal of Statistical Planning and Inference, 139 (2009), 2952.
doi: 10.1016/j.jspi.2009.01.018. |
[7] |
M. Engels, Portfolio Optimization: Beyond Markowitz,, Master's thesis, (2004). Google Scholar |
[8] |
P. C. Fishburn, Mean-risk analysis with risk associated with below-target returns,, American Economical Review, 67 (1977), 116. Google Scholar |
[9] |
S. Kataoka, A stochastic programming model,, Econometrica, 31 (1963), 181.
doi: 10.2307/1910956. |
[10] |
K. Boda, J. A. Filar, Y. Lin and L. Spanjers, Stochastic target hitting time and the problem of early retirement,, IEEE Transactions on Automatic Control, 49 (2004), 409.
doi: 10.1109/TAC.2004.824469. |
[11] |
K. Boda and J. A. Filar, Time consistent dynamic risk measures,, Mathematical Methods of Operations Research, 63 (2006), 169.
doi: 10.1007/s00186-005-0045-1. |
[12] |
H. Levy and M. Levy, The safety first expected utility model: Experimental evidence and economic implications,, Journal of Banking & Finance, 33 (2009), 1494.
doi: 10.1016/j.jbankfin.2009.02.014. |
[13] |
D. Li, T. F. Chan and W. L. Ng, Safety-first dynamic portfolio selection,, Dynamics of Continuous, 4 (1998), 585.
|
[14] |
Z. F. Li, J. Yao and D. Li, Behavior patterns of investment strategies under Roy's safety-first principle,, The Quarterly Review of Economics and Finance, 50 (2010), 167.
doi: 10.1016/j.qref.2009.11.004. |
[15] |
H. Markowitz, Portfolio selection,, Journal of Finance, 7 (1952), 79. Google Scholar |
[16] |
R. C. Merton, An analytic derivation of the efficient portfolio frontier,, The Journal of Financial and Quantitative Analysis, 7 (1972), 1851.
doi: 10.2307/2329621. |
[17] |
V. I. Norkin and S. V. Boyko, Safety-First Portfolio Selection,, Cybernetics and Systems Analysis, 48 (2012), 180.
doi: 10.1007/s10559-012-9396-9. |
[18] |
L. S. Ortobelli and S. T. Rachev, Safety-first analysis and stable paretian approach to portfolio choice theory,, Mathematical and Computer Modelling, 34 (2001), 1037.
doi: 10.1016/S0895-7177(01)00116-9. |
[19] |
L. S. Ortobelli and F. Pellerey, Market stochastic bounds with elliptical distributions,, Journal of Concrete and Applicable Mathematics, 6 (2008), 293.
|
[20] |
A. D. Roy, Safety-first and the holding of assets,, Econometrica, 20 (1952), 431.
doi: 10.2307/1907413. |
[21] |
H. Shefrin and M. Statman, Behavioral portfolio theory,, Journal of Financial and Quantitative Analysis, 35 (2000), 127.
doi: 10.2307/2676187. |
[22] |
N. Signer, Safety-first portfolio optimization: Fixed versus random target,, Thuenen-Series of Applied Economic Theory, (2010). Google Scholar |
[23] |
L. G. Telser, Safety first and hedging,, Review of Economic Studies, 23 (1955), 1.
doi: 10.2307/2296146. |
[24] |
S. M. Zhang, S. Y. Wang and X. T. Deng, Portfolio Selection Theory with Different Interest Rates for Borrowing and Lending,, Journal of Global Optimization, 28 (2004), 67.
doi: 10.1023/B:JOGO.0000006719.64826.55. |
[1] |
Palash Sarkar, Subhadip Singha. Verifying solutions to LWE with implications for concrete security. Advances in Mathematics of Communications, 2021, 15 (2) : 257-266. doi: 10.3934/amc.2020057 |
[2] |
Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109 |
[3] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[4] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[5] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[6] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[7] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[8] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[9] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[10] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[11] |
Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207 |
[12] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[13] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[14] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[15] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[16] |
Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020127 |
[17] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[18] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[19] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[20] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]