-
Previous Article
An augmented Lagrangian-based parallel splitting method for a one-leader-two-follower game
- JIMO Home
- This Issue
-
Next Article
Auction games for coordination of large-scale elastic loads in deregulated electricity markets
Equilibrium balking strategies in renewal input queue with Bernoulli-schedule controlled vacation and vacation interruption
1. | School of Basic Scienes, Indian Institute of Technology, Bhubaneswar-751007, India, India, India |
2. | School of Computer Application, KIIT University, Bhubaneswar-751024, India |
References:
[1] |
Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations,, Operations Research Letters, 33 (2005), 201.
doi: 10.1016/j.orl.2004.05.006. |
[2] |
A. D. Banik, U. C. Gupta and S. S. Pathak, On the GI/M/1/N queue with multiple working vacations-analytic analysis and computation,, Applied Mathematical Modelling, 31 (2007), 1701.
doi: 10.1016/j.apm.2006.05.010. |
[3] |
M. A. A. Boon, R. D. van der Mei and E. M. M. Winands, Applications of polling systems,, Surveys in Operations Research and Management Science, 16 (2011), 67.
doi: 10.1016/j.sorms.2011.01.001. |
[4] |
M. L. Chaudhry and J. G. C. Templeton, A First Course in Bulk Queues,, Wiley, (1983).
|
[5] |
M. L. Chaudhry, C. M. Harris and W. G. Marchal, Robustness of rootfinding in single-server queueing models,, ORSA Journal on Computing, 2 (1990), 273. Google Scholar |
[6] |
H. Chen, J. Li and N. Tian, The GI/M/1 queue with phase-type working vacations and vacation interruption,, Journal of Applied Mathematics and Computing, 30 (2009), 121.
doi: 10.1007/s12190-008-0161-1. |
[7] |
J. L. Dorsman, O. J. Boxma and R. D. van der Mei, On two-queue Markovian polling systems with exhaustive service,, Queueing Systems, 78 (2014), 287.
doi: 10.1007/s11134-014-9413-y. |
[8] |
B. T. Doshi, Queueing systems with vacations-A survey,, Queueing Systems, 1 (1986), 29.
doi: 10.1007/BF01149327. |
[9] |
A. Economou, A. Gómez-Corral and S. Kanta, Optimal balking strategies in single-server queues with general service and vacation times,, Performance Evaluation, 68 (2011), 967.
doi: 10.1016/j.peva.2011.07.001. |
[10] |
A. Economou and S. Kanta, Equilibrium balking strategies in the observable single-server queue with breakdowns and repairs,, Operations Research Letters, 36 (2008), 696.
doi: 10.1016/j.orl.2008.06.006. |
[11] |
N. M. Edelson and D. K. Hilderbrand, Congestion tolls for Poisson queuing processes,, Econometrica: Journal of the Econometric Society, 43 (1975), 81.
doi: 10.2307/1913415. |
[12] |
V. Goswami and P. V. Laxmi, Analysis of renewal input bulk arrival queue with single working vacation and partial batch rejection,, Journal of Industrial and Management Optimization, 6 (2010), 911.
doi: 10.3934/jimo.2010.6.911. |
[13] |
P. Guo and P. Zipkin, The effects of the availability of waiting-time information on a balking queue,, European Journal of Operational Research, 198 (2009), 199.
doi: 10.1016/j.ejor.2008.07.035. |
[14] |
R. Hassin and M. Haviv, To Queue or not to Queue: Equilibrium Behavior in Queueing Systems,, Springer, (2003).
doi: 10.1007/978-1-4615-0359-0. |
[15] |
J. Ke, C. Wu and Z. G. Zhang, Recent developments in vacation queueing models: A short survey,, International Journal of Operations Research, 7 (2010), 3. Google Scholar |
[16] |
J. Keilson and L. D. Servi, Oscillating random walk models for GI/G/1 vacation systems with Bernoulli schedules,, Journal of Applied Probability, 23 (1986), 790.
doi: 10.2307/3214016. |
[17] |
G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling,, ASA-SIAM Series on Statistics and Applied Probability, (1999).
doi: 10.1137/1.9780898719734. |
[18] |
J. Li and N. Tian, The M/M/1 queue with working vacations and vacation interruptions,, Journal of Systems Science and Systems Engineering, 16 (2007), 121.
doi: 10.1007/s11518-006-5030-6. |
[19] |
J. Li, N. Tian and Z. Ma, Performance analysis of GI/M/1 queue with working vacations and vacation interruption,, Applied Mathematical Modelling, 32 (2008), 2715.
doi: 10.1016/j.apm.2007.09.017. |
[20] |
P. Naor, The regulation of queue size by levying tolls,, Econometrica, 37 (1969), 15.
doi: 10.2307/1909200. |
[21] |
L. D. Servi and S. G. Finn, M/M/1 queues with working vacations (M/M/1/WV),, Performance Evaluation, 50 (2002), 41.
doi: 10.1016/S0166-5316(02)00057-3. |
[22] |
L. Takács, Introduction to the Theory of Queues,, University Texts in the Mathematical Sciences, (1962).
|
[23] |
H. Takagi, Analysis and application of polling models,, in Performance Evaluation: Origins and Directions, (1769), 423.
doi: 10.1007/3-540-46506-5_18. |
[24] |
L. Tao, Z. Liu and Z. Wang, The GI/M/1 queue with start-up period and single working vacation and Bernoulli vacation interruption,, Applied Mathematics and Computation, 218 (2011), 4401.
doi: 10.1016/j.amc.2011.10.017. |
[25] |
L. Tao, Z. Wang and Z. Liu, The GI/M/1 queue with Bernoulli-schedule-controlled vacation and vacation interruption,, Applied Mathematical Modelling, 37 (2013), 3724.
doi: 10.1016/j.apm.2012.07.045. |
[26] |
N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications,, International Series in Operations Research & Management Science, (2006).
|
[27] |
J. Wang and F. Zhang, Equilibrium analysis of the observable queues with balking and delayed repairs,, Applied Mathematics and Computation, 218 (2011), 2716.
doi: 10.1016/j.amc.2011.08.012. |
[28] |
U. Yechiali, On optimal balking rules and toll charges in the GI/M/1 queuing process,, Operations Research, 19 (1971), 349.
doi: 10.1287/opre.19.2.349. |
[29] |
D. Yue, W. Yue and G. Xu, Analysis of customers' impatience in an M/M/1 queue with working vacations,, Journal of Industrial and Management Optimization, 8 (2012), 895.
doi: 10.3934/jimo.2012.8.895. |
[30] |
F. Zhang, J. Wang and B. Liu, Equilibrium balking strategies in Markovian queues with working vacations,, Applied Mathematical Modelling, 37 (2013), 8264.
doi: 10.1016/j.apm.2013.03.049. |
[31] |
H. Zhang and D. Shi, The M/M/1 queue with Bernoulli-schedule-controlled vacation and vacation interruption,, Int. J. Inform. Manage. Sci, 20 (2009), 579.
|
[32] |
G. Zhao, X. Du and N. Tian, GI/M/1 queue with set-up period and working vacation and vacation interruption,, Int. J. Inform. Manage. Sci, 20 (2009), 351.
|
show all references
References:
[1] |
Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations,, Operations Research Letters, 33 (2005), 201.
doi: 10.1016/j.orl.2004.05.006. |
[2] |
A. D. Banik, U. C. Gupta and S. S. Pathak, On the GI/M/1/N queue with multiple working vacations-analytic analysis and computation,, Applied Mathematical Modelling, 31 (2007), 1701.
doi: 10.1016/j.apm.2006.05.010. |
[3] |
M. A. A. Boon, R. D. van der Mei and E. M. M. Winands, Applications of polling systems,, Surveys in Operations Research and Management Science, 16 (2011), 67.
doi: 10.1016/j.sorms.2011.01.001. |
[4] |
M. L. Chaudhry and J. G. C. Templeton, A First Course in Bulk Queues,, Wiley, (1983).
|
[5] |
M. L. Chaudhry, C. M. Harris and W. G. Marchal, Robustness of rootfinding in single-server queueing models,, ORSA Journal on Computing, 2 (1990), 273. Google Scholar |
[6] |
H. Chen, J. Li and N. Tian, The GI/M/1 queue with phase-type working vacations and vacation interruption,, Journal of Applied Mathematics and Computing, 30 (2009), 121.
doi: 10.1007/s12190-008-0161-1. |
[7] |
J. L. Dorsman, O. J. Boxma and R. D. van der Mei, On two-queue Markovian polling systems with exhaustive service,, Queueing Systems, 78 (2014), 287.
doi: 10.1007/s11134-014-9413-y. |
[8] |
B. T. Doshi, Queueing systems with vacations-A survey,, Queueing Systems, 1 (1986), 29.
doi: 10.1007/BF01149327. |
[9] |
A. Economou, A. Gómez-Corral and S. Kanta, Optimal balking strategies in single-server queues with general service and vacation times,, Performance Evaluation, 68 (2011), 967.
doi: 10.1016/j.peva.2011.07.001. |
[10] |
A. Economou and S. Kanta, Equilibrium balking strategies in the observable single-server queue with breakdowns and repairs,, Operations Research Letters, 36 (2008), 696.
doi: 10.1016/j.orl.2008.06.006. |
[11] |
N. M. Edelson and D. K. Hilderbrand, Congestion tolls for Poisson queuing processes,, Econometrica: Journal of the Econometric Society, 43 (1975), 81.
doi: 10.2307/1913415. |
[12] |
V. Goswami and P. V. Laxmi, Analysis of renewal input bulk arrival queue with single working vacation and partial batch rejection,, Journal of Industrial and Management Optimization, 6 (2010), 911.
doi: 10.3934/jimo.2010.6.911. |
[13] |
P. Guo and P. Zipkin, The effects of the availability of waiting-time information on a balking queue,, European Journal of Operational Research, 198 (2009), 199.
doi: 10.1016/j.ejor.2008.07.035. |
[14] |
R. Hassin and M. Haviv, To Queue or not to Queue: Equilibrium Behavior in Queueing Systems,, Springer, (2003).
doi: 10.1007/978-1-4615-0359-0. |
[15] |
J. Ke, C. Wu and Z. G. Zhang, Recent developments in vacation queueing models: A short survey,, International Journal of Operations Research, 7 (2010), 3. Google Scholar |
[16] |
J. Keilson and L. D. Servi, Oscillating random walk models for GI/G/1 vacation systems with Bernoulli schedules,, Journal of Applied Probability, 23 (1986), 790.
doi: 10.2307/3214016. |
[17] |
G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling,, ASA-SIAM Series on Statistics and Applied Probability, (1999).
doi: 10.1137/1.9780898719734. |
[18] |
J. Li and N. Tian, The M/M/1 queue with working vacations and vacation interruptions,, Journal of Systems Science and Systems Engineering, 16 (2007), 121.
doi: 10.1007/s11518-006-5030-6. |
[19] |
J. Li, N. Tian and Z. Ma, Performance analysis of GI/M/1 queue with working vacations and vacation interruption,, Applied Mathematical Modelling, 32 (2008), 2715.
doi: 10.1016/j.apm.2007.09.017. |
[20] |
P. Naor, The regulation of queue size by levying tolls,, Econometrica, 37 (1969), 15.
doi: 10.2307/1909200. |
[21] |
L. D. Servi and S. G. Finn, M/M/1 queues with working vacations (M/M/1/WV),, Performance Evaluation, 50 (2002), 41.
doi: 10.1016/S0166-5316(02)00057-3. |
[22] |
L. Takács, Introduction to the Theory of Queues,, University Texts in the Mathematical Sciences, (1962).
|
[23] |
H. Takagi, Analysis and application of polling models,, in Performance Evaluation: Origins and Directions, (1769), 423.
doi: 10.1007/3-540-46506-5_18. |
[24] |
L. Tao, Z. Liu and Z. Wang, The GI/M/1 queue with start-up period and single working vacation and Bernoulli vacation interruption,, Applied Mathematics and Computation, 218 (2011), 4401.
doi: 10.1016/j.amc.2011.10.017. |
[25] |
L. Tao, Z. Wang and Z. Liu, The GI/M/1 queue with Bernoulli-schedule-controlled vacation and vacation interruption,, Applied Mathematical Modelling, 37 (2013), 3724.
doi: 10.1016/j.apm.2012.07.045. |
[26] |
N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications,, International Series in Operations Research & Management Science, (2006).
|
[27] |
J. Wang and F. Zhang, Equilibrium analysis of the observable queues with balking and delayed repairs,, Applied Mathematics and Computation, 218 (2011), 2716.
doi: 10.1016/j.amc.2011.08.012. |
[28] |
U. Yechiali, On optimal balking rules and toll charges in the GI/M/1 queuing process,, Operations Research, 19 (1971), 349.
doi: 10.1287/opre.19.2.349. |
[29] |
D. Yue, W. Yue and G. Xu, Analysis of customers' impatience in an M/M/1 queue with working vacations,, Journal of Industrial and Management Optimization, 8 (2012), 895.
doi: 10.3934/jimo.2012.8.895. |
[30] |
F. Zhang, J. Wang and B. Liu, Equilibrium balking strategies in Markovian queues with working vacations,, Applied Mathematical Modelling, 37 (2013), 8264.
doi: 10.1016/j.apm.2013.03.049. |
[31] |
H. Zhang and D. Shi, The M/M/1 queue with Bernoulli-schedule-controlled vacation and vacation interruption,, Int. J. Inform. Manage. Sci, 20 (2009), 579.
|
[32] |
G. Zhao, X. Du and N. Tian, GI/M/1 queue with set-up period and working vacation and vacation interruption,, Int. J. Inform. Manage. Sci, 20 (2009), 351.
|
[1] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[2] |
Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1 |
[3] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[4] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[5] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[6] |
Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045 |
[7] |
Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020128 |
[8] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]