July  2016, 12(3): 879-890. doi: 10.3934/jimo.2016.12.879

An augmented Lagrangian-based parallel splitting method for a one-leader-two-follower game

1. 

Department of Mathematics, Taiyuan Normal University, Taiyuan 030012, Shanxi Province, China

Received  February 2014 Revised  November 2014 Published  September 2015

In this paper, we exploit a new parallel splitting method for the typical structured variational inequality problems which can be interpreted as a game with a leader and two followers. In the framework of this method, two followers decide their strategies simultaneously based on the instruction of the leader. Then, the leader improves his instruction by revising his own variable value according to the feedback information from the followers. The convergence of the method is established under some suitable conditions. Finally, we apply the proposed method to solve some application problems. Computational studies show that the method is reliable and efficient.
Citation: Xihong Yan. An augmented Lagrangian-based parallel splitting method for a one-leader-two-follower game. Journal of Industrial & Management Optimization, 2016, 12 (3) : 879-890. doi: 10.3934/jimo.2016.12.879
References:
[1]

G. Chen and M. Teboulle, A proximal-based decomposition method for convex minimization problems,, Mathematical Programming, 64 (1994), 81.  doi: 10.1007/BF01582566.  Google Scholar

[2]

J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators,, Mathematical Programming, 55 (1992), 293.  doi: 10.1007/BF01581204.  Google Scholar

[3]

M. Fukushima, Application of the alternating direction method of multipliers to separable convex programming problems,, Computational Optimization and Applications, 1 (1992), 93.  doi: 10.1007/BF00247655.  Google Scholar

[4]

D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximations,, Computers and Mathematics with Applications, 2 (1976), 17.  doi: 10.1016/0898-1221(76)90003-1.  Google Scholar

[5]

R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics,, SIAM Studies in Applied Mathematics, (1989).  doi: 10.1137/1.9781611970838.  Google Scholar

[6]

D. Han, H. He, H. Yang and X. Yuan, A customized Douglas-Rachford splitting algorithm for separable convex minimization with linear constraints,, Numerische Mathematik, 127 (2014), 167.  doi: 10.1007/s00211-013-0580-2.  Google Scholar

[7]

B. S. He, Inexact implicit methods for monotone general variational inequalities,, Mathematical Programming, 86 (1999), 199.  doi: 10.1007/s101070050086.  Google Scholar

[8]

B. S. He, Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities,, Computational Optimization and Applications, 42 (2009), 195.  doi: 10.1007/s10589-007-9109-x.  Google Scholar

[9]

B. S. He, L. Z. Liao, D. Han and H. Yang, A new inexact alternating directions method for monotone variational inequalities,, Mathematical Programming 92 (2002), 92 (2002), 103.  doi: 10.1007/s101070100280.  Google Scholar

[10]

B. S. He, Y. Xu and X. M. Yuan, A logarithmic-quadratic proximal prediction-correction method for structured monotone variational inequalities,, Computational Optimization and Applications, 35 (2006), 19.  doi: 10.1007/s10589-006-6442-4.  Google Scholar

[11]

S. Kontogiorgis and R. Meyer, A variable-penalty alternating directions method for convex optimization,, Mathematical Programming, 83 (1998), 29.  doi: 10.1007/BF02680549.  Google Scholar

[12]

A. Nagurney and D. Zhang, Projected Dynamical Systems and Variational Inequalities with Applications,, Kluwer, (1996).  doi: 10.1007/978-1-4615-2301-7.  Google Scholar

[13]

M. Tao and X. Yuan, An inexact parallel splitting augmented Lagrangian method for monotone variational inequalities with separable structures,, Computational Optimization and Applications, 52 (2012), 439.  doi: 10.1007/s10589-011-9417-z.  Google Scholar

[14]

P. Tseng, Alternating projection-proximal methods for convex programming and variational inequalities,, SIAM Journal on Optimization, 7 (1997), 951.  doi: 10.1137/S1052623495279797.  Google Scholar

[15]

K. Wang, L. Xu and D. Han, A new parallel splitting descent method for structured variational inequalities,, Journal of Industrial and Management Optimization, 10 (2014), 461.  doi: 10.3934/jimo.2014.10.461.  Google Scholar

show all references

References:
[1]

G. Chen and M. Teboulle, A proximal-based decomposition method for convex minimization problems,, Mathematical Programming, 64 (1994), 81.  doi: 10.1007/BF01582566.  Google Scholar

[2]

J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators,, Mathematical Programming, 55 (1992), 293.  doi: 10.1007/BF01581204.  Google Scholar

[3]

M. Fukushima, Application of the alternating direction method of multipliers to separable convex programming problems,, Computational Optimization and Applications, 1 (1992), 93.  doi: 10.1007/BF00247655.  Google Scholar

[4]

D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximations,, Computers and Mathematics with Applications, 2 (1976), 17.  doi: 10.1016/0898-1221(76)90003-1.  Google Scholar

[5]

R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics,, SIAM Studies in Applied Mathematics, (1989).  doi: 10.1137/1.9781611970838.  Google Scholar

[6]

D. Han, H. He, H. Yang and X. Yuan, A customized Douglas-Rachford splitting algorithm for separable convex minimization with linear constraints,, Numerische Mathematik, 127 (2014), 167.  doi: 10.1007/s00211-013-0580-2.  Google Scholar

[7]

B. S. He, Inexact implicit methods for monotone general variational inequalities,, Mathematical Programming, 86 (1999), 199.  doi: 10.1007/s101070050086.  Google Scholar

[8]

B. S. He, Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities,, Computational Optimization and Applications, 42 (2009), 195.  doi: 10.1007/s10589-007-9109-x.  Google Scholar

[9]

B. S. He, L. Z. Liao, D. Han and H. Yang, A new inexact alternating directions method for monotone variational inequalities,, Mathematical Programming 92 (2002), 92 (2002), 103.  doi: 10.1007/s101070100280.  Google Scholar

[10]

B. S. He, Y. Xu and X. M. Yuan, A logarithmic-quadratic proximal prediction-correction method for structured monotone variational inequalities,, Computational Optimization and Applications, 35 (2006), 19.  doi: 10.1007/s10589-006-6442-4.  Google Scholar

[11]

S. Kontogiorgis and R. Meyer, A variable-penalty alternating directions method for convex optimization,, Mathematical Programming, 83 (1998), 29.  doi: 10.1007/BF02680549.  Google Scholar

[12]

A. Nagurney and D. Zhang, Projected Dynamical Systems and Variational Inequalities with Applications,, Kluwer, (1996).  doi: 10.1007/978-1-4615-2301-7.  Google Scholar

[13]

M. Tao and X. Yuan, An inexact parallel splitting augmented Lagrangian method for monotone variational inequalities with separable structures,, Computational Optimization and Applications, 52 (2012), 439.  doi: 10.1007/s10589-011-9417-z.  Google Scholar

[14]

P. Tseng, Alternating projection-proximal methods for convex programming and variational inequalities,, SIAM Journal on Optimization, 7 (1997), 951.  doi: 10.1137/S1052623495279797.  Google Scholar

[15]

K. Wang, L. Xu and D. Han, A new parallel splitting descent method for structured variational inequalities,, Journal of Industrial and Management Optimization, 10 (2014), 461.  doi: 10.3934/jimo.2014.10.461.  Google Scholar

[1]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[2]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[3]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[4]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[5]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[6]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[7]

V. Kumar Murty, Ying Zong. Splitting of abelian varieties. Advances in Mathematics of Communications, 2014, 8 (4) : 511-519. doi: 10.3934/amc.2014.8.511

[8]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[9]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[10]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[11]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[12]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[13]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

[14]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[15]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[16]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[17]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[18]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[19]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[20]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]