-
Previous Article
The risk-averse newsvendor game with competition on demand
- JIMO Home
- This Issue
-
Next Article
Advance selling decisions with overconfident consumers
Two bounds for integrating the virtual dynamic cellular manufacturing problem into supply chain management
1. | Department of Industrial Engineering & Management Systems , Amirkabir University of Technology, 424 Hafez Ave., P.O. Box 15875-4413, Tehran, Iran, Iran |
References:
[1] |
A. Aalaei and H. Davoudpour, Designing a mathematical model for integrating dynamic cellular manufacturing into supply chain system,, AIP Conf. Proc., 1499 (2012), 239.
doi: 10.1063/1.4768994. |
[2] |
A. Aalaei and H. Davoudpour, Revised multi-choice goal programming for incorporated dynamic virtual cellular manufacturing into supply chain management: A case study,, Engineering Applications of Artificial Intelligence, (2015).
doi: 10.1016/j.engappai.2015.04.005. |
[3] |
S. Ahkioon, A. A. Bulgak T. Bektas, Integrated cellular manufacturing systems design with production planning and dynamic system reconfiguration,, European Journal of Operational Research, 192 (2009), 414.
doi: 10.1016/j.ejor.2007.09.023. |
[4] |
J. Balakrishnan and C. H. Cheng, Dynamic cellular manufacturing under multi-period planning horizons,, Journal of Manufacturing Technology Management, 16 (2005), 516. Google Scholar |
[5] |
J. F. Benders, Partitioning procedures for solving mixed-variables programming problems,, Numerische Mathematik, 4 (1962), 238.
doi: 10.1007/BF01386316. |
[6] |
H. M. Bidhandi, R. M. Yusuff, M. M. H. M. Ahmad and M. R. A. Bakar, Development of a new approach for deterministic supply chain network design,, European Journal of Operational Research, 198 (2009), 121. Google Scholar |
[7] |
O. Çakιr, Benders decomposition applied to multi-commodity, multi-mode distribution planning,, Expert Systems with Applications, 36 (2009), 8212. Google Scholar |
[8] |
J. Chen and S. S. Heragu, Stepwise decomposition approaches for large scale cell formation problems,, European Journal of Operational Research, 113 (1999), 64.
doi: 10.1016/S0377-2217(97)00419-0. |
[9] |
A. J. Conejo, E. Castillo, R. Minguez and R. Garcia-Bertrand, Decomposition Techniques in Mathematical Programming,, Engineering and Science Applications, (2006).
|
[10] |
F. Defersha and M. Chen, A comprehensive mathematical model for the design of cellular manufacturing systems,, International Journal of Production Economics, 103 (2006), 767.
doi: 10.1016/j.ijpe.2005.10.008. |
[11] |
K. Dogan and M. Goetschalckx, A primal decomposition method for the integrated design of multi-period production-distribution systems,, IIE Transactions, 31 (1999), 1027.
doi: 10.1080/07408179908969904. |
[12] |
S. S. Heragu, Group technology and cellular manufacturing,, IEEE Transactions of Systems, 24 (1994), 203.
doi: 10.1109/21.281420. |
[13] |
S. S. Heragu and J. Chen, Optimal solution of cellular manufacturing system design: Benders' decomposition approach,, European Journal of Operational Research, 107 (1998), 175.
doi: 10.1016/S0377-2217(97)00256-7. |
[14] |
S. E. Kesen, M. D. Toksari, Z. Güngr and E. Güner, Analyzing the behaviors of virtual cells (VCs) and traditional manufacturing systems: Ant colony optimization (ACO)-based metamodels,, Computers and Operations Research, 36 (2009), 2275.
doi: 10.1016/j.cor.2008.09.002. |
[15] |
H. Li and K. Womer, Optimizing the supply chain configuration for make-to-order manufacturing,, European Journal of Operational Research, 221 (2012), 118.
doi: 10.1016/j.ejor.2012.03.025. |
[16] |
I. Mahdavi, A. Aalaei, M. M. Paydar and M. Solimanpur, Designing a mathematical model for dynamic cellular manufacturing systems considering production planning and worker assignment,, Computers and Mathematics with Applications, 60 (2010), 1014.
doi: 10.1016/j.camwa.2010.03.044. |
[17] |
I. Mahdavi, A. Aalaei, M. M. Paydar and M. Solimanpur, Multi-objective cell formation and production planning in dynamic virtual cellular manufacturing systems,, International Journal of Production Research, 49 (2011), 6517.
doi: 10.1080/00207543.2010.524902. |
[18] |
I. Mahdavi, A. Aalaei, M. M. Paydar and M. Solimanpur, A new mathematical model for integrating all incidence matrices in multi-dimensional cellular manufacturing system,, Journal of Manufacturing Systems, 31 (2012), 214.
doi: 10.1016/j.jmsy.2011.07.007. |
[19] |
S. M. Mansouri, S. M. Moattar Husseini and S. T. Newman, A review of the modern approaches to multi-criteria cell design,, International Journal of Production Research, 38 (2000), 1201.
doi: 10.1080/002075400189095. |
[20] |
M. T. Melo, S. Nickel and F. Saldanha-da-Gama, Facility location and supply chain management, A review,, European Journal of Operational Research, 196 (2009), 401.
doi: 10.1016/j.ejor.2008.05.007. |
[21] |
G. Nomden, J. Slomp and N. C. Suresh, Virtual manufacturing cells: A taxonomy of past research and identification of future research issues,, International Journal of Flexible Manufacturing Systems, 17 (2005), 71.
doi: 10.1007/s10696-006-8122-1. |
[22] |
H. Osman and K. Demirli, A bilinear goal programming model and a modified Benders decomposition algorithm for supply chain reconfiguration and supplier selection,, International Journal of Production Economics, 124 (2010), 97.
doi: 10.1016/j.ijpe.2009.10.012. |
[23] |
P. P. Rao and R. P. Mohanty, Impact of cellular manufacturing on supply chain management: Exploration of interrelationships between design issues,, International Journal of Manufacturing Technology and Management, 5 (2003), 507.
doi: 10.1504/IJMTM.2003.003706. |
[24] |
M. Rheault, J. Drolet and G. Abdulnour, Physically reconfigurable virtual cells: A dynamic model for a highly dynamic environment,, Computers & Industrial Engineering, 29 (1995), 221.
doi: 10.1016/0360-8352(95)00075-C. |
[25] |
L. K. Saxena and P. K. Jain, An integrated model of dynamic cellular manufacturing and supply chain system design,, International Journal of Advance Manufacturing Technology, 62 (2012), 385.
doi: 10.1007/s00170-011-3806-4. |
[26] |
J. Schaller, Incorporating cellular manufacturing into supply chain design,, International Journal of Production Research, 46 (2008), 4925.
doi: 10.1080/00207540701348761. |
[27] |
D. Simchi-Levi, P. Kaminsky and R. Shankar, Designing and Managing the Supply Chain: Concepts,, Strategies and Case Studies, (2007). Google Scholar |
[28] |
J. Slomp, B. V. Chowdary and N. C. Suresh, Design of virtual manufacturing cells: A mathematical programming approach,, Robotics and Computer Integrated Manufacturing, 21 (2005), 273.
doi: 10.1016/j.rcim.2004.11.001. |
[29] |
S. Talluri and R. C. Baker, A multi-phase mathematical programming approach for effective supply chain design,, European Journal of Operational Research, 141 (2002), 544.
doi: 10.1016/S0377-2217(01)00277-6. |
[30] |
H. Uster and H. Agrahari, A Benders decomposition approach for a distribution network design problem with consolidation and capacity considerations,, Operational Research Letters, 39 (2011), 138.
doi: 10.1016/j.orl.2011.02.003. |
[31] |
U. Wemmerlov and N. L. Hyer, Cellular manufacturing in the U. S. industry: A survey of users,, International Journal of Production Research, 27 (1989), 1511.
doi: 10.1080/00207548908942637. |
show all references
References:
[1] |
A. Aalaei and H. Davoudpour, Designing a mathematical model for integrating dynamic cellular manufacturing into supply chain system,, AIP Conf. Proc., 1499 (2012), 239.
doi: 10.1063/1.4768994. |
[2] |
A. Aalaei and H. Davoudpour, Revised multi-choice goal programming for incorporated dynamic virtual cellular manufacturing into supply chain management: A case study,, Engineering Applications of Artificial Intelligence, (2015).
doi: 10.1016/j.engappai.2015.04.005. |
[3] |
S. Ahkioon, A. A. Bulgak T. Bektas, Integrated cellular manufacturing systems design with production planning and dynamic system reconfiguration,, European Journal of Operational Research, 192 (2009), 414.
doi: 10.1016/j.ejor.2007.09.023. |
[4] |
J. Balakrishnan and C. H. Cheng, Dynamic cellular manufacturing under multi-period planning horizons,, Journal of Manufacturing Technology Management, 16 (2005), 516. Google Scholar |
[5] |
J. F. Benders, Partitioning procedures for solving mixed-variables programming problems,, Numerische Mathematik, 4 (1962), 238.
doi: 10.1007/BF01386316. |
[6] |
H. M. Bidhandi, R. M. Yusuff, M. M. H. M. Ahmad and M. R. A. Bakar, Development of a new approach for deterministic supply chain network design,, European Journal of Operational Research, 198 (2009), 121. Google Scholar |
[7] |
O. Çakιr, Benders decomposition applied to multi-commodity, multi-mode distribution planning,, Expert Systems with Applications, 36 (2009), 8212. Google Scholar |
[8] |
J. Chen and S. S. Heragu, Stepwise decomposition approaches for large scale cell formation problems,, European Journal of Operational Research, 113 (1999), 64.
doi: 10.1016/S0377-2217(97)00419-0. |
[9] |
A. J. Conejo, E. Castillo, R. Minguez and R. Garcia-Bertrand, Decomposition Techniques in Mathematical Programming,, Engineering and Science Applications, (2006).
|
[10] |
F. Defersha and M. Chen, A comprehensive mathematical model for the design of cellular manufacturing systems,, International Journal of Production Economics, 103 (2006), 767.
doi: 10.1016/j.ijpe.2005.10.008. |
[11] |
K. Dogan and M. Goetschalckx, A primal decomposition method for the integrated design of multi-period production-distribution systems,, IIE Transactions, 31 (1999), 1027.
doi: 10.1080/07408179908969904. |
[12] |
S. S. Heragu, Group technology and cellular manufacturing,, IEEE Transactions of Systems, 24 (1994), 203.
doi: 10.1109/21.281420. |
[13] |
S. S. Heragu and J. Chen, Optimal solution of cellular manufacturing system design: Benders' decomposition approach,, European Journal of Operational Research, 107 (1998), 175.
doi: 10.1016/S0377-2217(97)00256-7. |
[14] |
S. E. Kesen, M. D. Toksari, Z. Güngr and E. Güner, Analyzing the behaviors of virtual cells (VCs) and traditional manufacturing systems: Ant colony optimization (ACO)-based metamodels,, Computers and Operations Research, 36 (2009), 2275.
doi: 10.1016/j.cor.2008.09.002. |
[15] |
H. Li and K. Womer, Optimizing the supply chain configuration for make-to-order manufacturing,, European Journal of Operational Research, 221 (2012), 118.
doi: 10.1016/j.ejor.2012.03.025. |
[16] |
I. Mahdavi, A. Aalaei, M. M. Paydar and M. Solimanpur, Designing a mathematical model for dynamic cellular manufacturing systems considering production planning and worker assignment,, Computers and Mathematics with Applications, 60 (2010), 1014.
doi: 10.1016/j.camwa.2010.03.044. |
[17] |
I. Mahdavi, A. Aalaei, M. M. Paydar and M. Solimanpur, Multi-objective cell formation and production planning in dynamic virtual cellular manufacturing systems,, International Journal of Production Research, 49 (2011), 6517.
doi: 10.1080/00207543.2010.524902. |
[18] |
I. Mahdavi, A. Aalaei, M. M. Paydar and M. Solimanpur, A new mathematical model for integrating all incidence matrices in multi-dimensional cellular manufacturing system,, Journal of Manufacturing Systems, 31 (2012), 214.
doi: 10.1016/j.jmsy.2011.07.007. |
[19] |
S. M. Mansouri, S. M. Moattar Husseini and S. T. Newman, A review of the modern approaches to multi-criteria cell design,, International Journal of Production Research, 38 (2000), 1201.
doi: 10.1080/002075400189095. |
[20] |
M. T. Melo, S. Nickel and F. Saldanha-da-Gama, Facility location and supply chain management, A review,, European Journal of Operational Research, 196 (2009), 401.
doi: 10.1016/j.ejor.2008.05.007. |
[21] |
G. Nomden, J. Slomp and N. C. Suresh, Virtual manufacturing cells: A taxonomy of past research and identification of future research issues,, International Journal of Flexible Manufacturing Systems, 17 (2005), 71.
doi: 10.1007/s10696-006-8122-1. |
[22] |
H. Osman and K. Demirli, A bilinear goal programming model and a modified Benders decomposition algorithm for supply chain reconfiguration and supplier selection,, International Journal of Production Economics, 124 (2010), 97.
doi: 10.1016/j.ijpe.2009.10.012. |
[23] |
P. P. Rao and R. P. Mohanty, Impact of cellular manufacturing on supply chain management: Exploration of interrelationships between design issues,, International Journal of Manufacturing Technology and Management, 5 (2003), 507.
doi: 10.1504/IJMTM.2003.003706. |
[24] |
M. Rheault, J. Drolet and G. Abdulnour, Physically reconfigurable virtual cells: A dynamic model for a highly dynamic environment,, Computers & Industrial Engineering, 29 (1995), 221.
doi: 10.1016/0360-8352(95)00075-C. |
[25] |
L. K. Saxena and P. K. Jain, An integrated model of dynamic cellular manufacturing and supply chain system design,, International Journal of Advance Manufacturing Technology, 62 (2012), 385.
doi: 10.1007/s00170-011-3806-4. |
[26] |
J. Schaller, Incorporating cellular manufacturing into supply chain design,, International Journal of Production Research, 46 (2008), 4925.
doi: 10.1080/00207540701348761. |
[27] |
D. Simchi-Levi, P. Kaminsky and R. Shankar, Designing and Managing the Supply Chain: Concepts,, Strategies and Case Studies, (2007). Google Scholar |
[28] |
J. Slomp, B. V. Chowdary and N. C. Suresh, Design of virtual manufacturing cells: A mathematical programming approach,, Robotics and Computer Integrated Manufacturing, 21 (2005), 273.
doi: 10.1016/j.rcim.2004.11.001. |
[29] |
S. Talluri and R. C. Baker, A multi-phase mathematical programming approach for effective supply chain design,, European Journal of Operational Research, 141 (2002), 544.
doi: 10.1016/S0377-2217(01)00277-6. |
[30] |
H. Uster and H. Agrahari, A Benders decomposition approach for a distribution network design problem with consolidation and capacity considerations,, Operational Research Letters, 39 (2011), 138.
doi: 10.1016/j.orl.2011.02.003. |
[31] |
U. Wemmerlov and N. L. Hyer, Cellular manufacturing in the U. S. industry: A survey of users,, International Journal of Production Research, 27 (1989), 1511.
doi: 10.1080/00207548908942637. |
[1] |
Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169 |
[2] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[3] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[4] |
Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269 |
[5] |
Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491 |
[6] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[7] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[8] |
Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024 |
[9] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[10] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[11] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[12] |
Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 |
[13] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[14] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[15] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[16] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[17] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[18] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[19] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[20] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]