# American Institute of Mathematical Sciences

January  2017, 13(1): 207-222. doi: 10.3934/jimo.2016012

## The finite-time ruin probability for an inhomogeneous renewal risk model

 Faculty of Mathematics and and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania

* Corresponding author: jonas.siaulys@mif.vu.lt

Received  March 2015 Revised  December 2015 Published  March 2016

Fund Project: The second author is supported by a grant No. MIP-13079 from the Research Council of Lithuania.

In the paper, we give an asymptotic formula for the finite-time ruin probability in a generalized renewal risk model. We consider the renewal risk model with independent strongly subexponential claim sizes and independent not necessarily identically distributed inter occurrence times having finite variances. We find out that the asymptotic formula for the finite-time ruin probability is insensitive to the homogeneity of inter-occurrence times.

Citation: Emilija Bernackaitė, Jonas Šiaulys. The finite-time ruin probability for an inhomogeneous renewal risk model. Journal of Industrial and Management Optimization, 2017, 13 (1) : 207-222. doi: 10.3934/jimo.2016012
##### References:
 [1] E. Sparre Andersen, On the collective theory of risk in case of contagion between claims, Transactions of the XV-th International Congress of Actuaries, 2 (1957). [2] I. M. Andrulytė, E. Bernackaitė, D. Kievinaitė and J. Šiaulys, A Lundberg-type inequality for an inhomogeneous renewal risk model, Modern Stochastics: Theory and Applications, 2 (2015), 173-184. [3] E. Bernackaitė and J. Šiaulys, The exponential moment tail of inhomogeneous renewal process, Statistics and Probability Letters, 97 (2015), 9-15.  doi: 10.1016/j.spl.2014.10.018. [4] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. doi: 10.1017/CBO9780511721434. [5] V. P. Chistyakov (Čistjakov), A theorem on sums of independent positive random variables and its applications to branching processes, Theory of Probability and Its Applications (Teoriya Veroyatnostei i ee Primeneniya), 9 (1964), 640-648. [6] P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, New York, 1997. doi: 10.1007/978-3-642-33483-2. [7] P. Embrechts and N. Veraverbeke, Estimates for the probability of ruin with special emphasis on the possibility of large claims, Insurance: Mathematics and Economics, 1 (1984), 55-72.  doi: 10.1016/0167-6687(82)90021-X. [8] S. Foss, D. Korshunov and S. Zachary, An Introduction to Heavy-Tailed and Subexponential Distributions, Springer, 2011. doi: 10.1007/978-1-4419-9473-8. [9] R. Kaas and Q. Tang, Note on the tail behavior of random walk maxima with heavy tails and negative drift, North American Actuarial Journal, 7 (2003), 57-61.  doi: 10.1080/10920277.2003.10596103. [10] J. Kočetova, R. Leipus and J. Šiaulys, A property of the renewal counting process with application to the finite-time ruin probability, Lithuanian Mathematical Journal, 49 (2009), 55-61.  doi: 10.1007/s10986-009-9032-1. [11] D. Korshunov, Large-deviation probabilities for maxima of sums of independent random variables with negative mean and subexponential distribution, Theory of Probability and its Applications, 46 (2002), 355-366.  doi: 10.1137/S0040585X97979019. [12] R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability in renewal risk models, Applied Stochastic Models in Bussines and Industry, 25 (2009), 309-321.  doi: 10.1002/asmb.747. [13] V. V. Petrov, Limit Theorems of Probability Theory, Clarendon Press, Oxford, 1995. [14] E. J. G. Pitman, Subexponential distribution functions, Journal of Australian Mathematical Society (Series A), 29 (1980), 337-347.  doi: 10.1017/S1446788700021340. [15] A. N. Shiryaev, Probability, Springer, 1996. doi: 10.1007/978-1-4757-2539-1. [16] W. L. Smith, On the elementary renewal theorem for non -identicaly distributed variables, Pacific Journal of Mathematics, 14 (1964), 673-699.  doi: 10.2140/pjm.1964.14.673. [17] Q. Tang, Asymptotics for the finite time ruin probability in the renewal model with consistent variation, Stochastic Models, 20 (2004), 281-297.  doi: 10.1081/STM-200025739. [18] N. Veraverbeke, Asymptotic behavior of Wiener-Hopf factors of a random walk, Stochastic Processes and their Applications, 5 (1977), 27-37.  doi: 10.1016/0304-4149(77)90047-3. [19] Y. Wang, Z. Cui, K. Wang and X. Ma, Uniform asymptotics of the finite-time ruin probability for all times, Journal of Mathematical Analysis and Applications, 390 (2012), 208-223.  doi: 10.1016/j.jmaa.2012.01.025.

show all references

##### References:
 [1] E. Sparre Andersen, On the collective theory of risk in case of contagion between claims, Transactions of the XV-th International Congress of Actuaries, 2 (1957). [2] I. M. Andrulytė, E. Bernackaitė, D. Kievinaitė and J. Šiaulys, A Lundberg-type inequality for an inhomogeneous renewal risk model, Modern Stochastics: Theory and Applications, 2 (2015), 173-184. [3] E. Bernackaitė and J. Šiaulys, The exponential moment tail of inhomogeneous renewal process, Statistics and Probability Letters, 97 (2015), 9-15.  doi: 10.1016/j.spl.2014.10.018. [4] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. doi: 10.1017/CBO9780511721434. [5] V. P. Chistyakov (Čistjakov), A theorem on sums of independent positive random variables and its applications to branching processes, Theory of Probability and Its Applications (Teoriya Veroyatnostei i ee Primeneniya), 9 (1964), 640-648. [6] P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, New York, 1997. doi: 10.1007/978-3-642-33483-2. [7] P. Embrechts and N. Veraverbeke, Estimates for the probability of ruin with special emphasis on the possibility of large claims, Insurance: Mathematics and Economics, 1 (1984), 55-72.  doi: 10.1016/0167-6687(82)90021-X. [8] S. Foss, D. Korshunov and S. Zachary, An Introduction to Heavy-Tailed and Subexponential Distributions, Springer, 2011. doi: 10.1007/978-1-4419-9473-8. [9] R. Kaas and Q. Tang, Note on the tail behavior of random walk maxima with heavy tails and negative drift, North American Actuarial Journal, 7 (2003), 57-61.  doi: 10.1080/10920277.2003.10596103. [10] J. Kočetova, R. Leipus and J. Šiaulys, A property of the renewal counting process with application to the finite-time ruin probability, Lithuanian Mathematical Journal, 49 (2009), 55-61.  doi: 10.1007/s10986-009-9032-1. [11] D. Korshunov, Large-deviation probabilities for maxima of sums of independent random variables with negative mean and subexponential distribution, Theory of Probability and its Applications, 46 (2002), 355-366.  doi: 10.1137/S0040585X97979019. [12] R. Leipus and J. Šiaulys, Asymptotic behaviour of the finite-time ruin probability in renewal risk models, Applied Stochastic Models in Bussines and Industry, 25 (2009), 309-321.  doi: 10.1002/asmb.747. [13] V. V. Petrov, Limit Theorems of Probability Theory, Clarendon Press, Oxford, 1995. [14] E. J. G. Pitman, Subexponential distribution functions, Journal of Australian Mathematical Society (Series A), 29 (1980), 337-347.  doi: 10.1017/S1446788700021340. [15] A. N. Shiryaev, Probability, Springer, 1996. doi: 10.1007/978-1-4757-2539-1. [16] W. L. Smith, On the elementary renewal theorem for non -identicaly distributed variables, Pacific Journal of Mathematics, 14 (1964), 673-699.  doi: 10.2140/pjm.1964.14.673. [17] Q. Tang, Asymptotics for the finite time ruin probability in the renewal model with consistent variation, Stochastic Models, 20 (2004), 281-297.  doi: 10.1081/STM-200025739. [18] N. Veraverbeke, Asymptotic behavior of Wiener-Hopf factors of a random walk, Stochastic Processes and their Applications, 5 (1977), 27-37.  doi: 10.1016/0304-4149(77)90047-3. [19] Y. Wang, Z. Cui, K. Wang and X. Ma, Uniform asymptotics of the finite-time ruin probability for all times, Journal of Mathematical Analysis and Applications, 390 (2012), 208-223.  doi: 10.1016/j.jmaa.2012.01.025.
 [1] Qingwu Gao, Zhongquan Huang, Houcai Shen, Juan Zheng. Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims. Journal of Industrial and Management Optimization, 2016, 12 (1) : 31-43. doi: 10.3934/jimo.2016.12.31 [2] Baoyin Xun, Kam C. Yuen, Kaiyong Wang. The finite-time ruin probability of a risk model with a general counting process and stochastic return. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1541-1556. doi: 10.3934/jimo.2021032 [3] Xinru Ji, Bingjie Wang, Jigao Yan, Dongya Cheng. Asymptotic estimates for finite-time ruin probabilities in a generalized dependent bidimensional risk model with CMC simulations. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022036 [4] Yinghui Dong, Guojing Wang. Ruin probability for renewal risk model with negative risk sums. Journal of Industrial and Management Optimization, 2006, 2 (2) : 229-236. doi: 10.3934/jimo.2006.2.229 [5] Yuebao Wang, Qingwu Gao, Kaiyong Wang, Xijun Liu. Random time ruin probability for the renewal risk model with heavy-tailed claims. Journal of Industrial and Management Optimization, 2009, 5 (4) : 719-736. doi: 10.3934/jimo.2009.5.719 [6] Rongfei Liu, Dingcheng Wang, Jiangyan Peng. Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial and Management Optimization, 2017, 13 (2) : 995-1007. doi: 10.3934/jimo.2016058 [7] Yinghua Dong, Yuebao Wang. Uniform estimates for ruin probabilities in the renewal risk model with upper-tail independent claims and premiums. Journal of Industrial and Management Optimization, 2011, 7 (4) : 849-874. doi: 10.3934/jimo.2011.7.849 [8] Jiangyan Peng, Dingcheng Wang. Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns. Journal of Industrial and Management Optimization, 2017, 13 (1) : 155-185. doi: 10.3934/jimo.2016010 [9] Arno Berger. On finite-time hyperbolicity. Communications on Pure and Applied Analysis, 2011, 10 (3) : 963-981. doi: 10.3934/cpaa.2011.10.963 [10] Arno Berger, Doan Thai Son, Stefan Siegmund. Nonautonomous finite-time dynamics. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 463-492. doi: 10.3934/dcdsb.2008.9.463 [11] Juan Cao, Fengli Ren, Dacheng Zhou. Asymptotic and finite-time cluster synchronization of neural networks via two different controllers. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022005 [12] Sanjeeva Balasuriya. Uncertainty in finite-time Lyapunov exponent computations. Journal of Computational Dynamics, 2020, 7 (2) : 313-337. doi: 10.3934/jcd.2020013 [13] Fatiha Alabau-Boussouira, Vincent Perrollaz, Lionel Rosier. Finite-time stabilization of a network of strings. Mathematical Control and Related Fields, 2015, 5 (4) : 721-742. doi: 10.3934/mcrf.2015.5.721 [14] Young-Pil Choi, Seung-Yeal Ha, Jeongho Kim. Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Networks and Heterogeneous Media, 2018, 13 (3) : 379-407. doi: 10.3934/nhm.2018017 [15] Jianjun Paul Tian. Finite-time perturbations of dynamical systems and applications to tumor therapy. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 469-479. doi: 10.3934/dcdsb.2009.12.469 [16] Shu Dai, Dong Li, Kun Zhao. Finite-time quenching of competing species with constrained boundary evaporation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1275-1290. doi: 10.3934/dcdsb.2013.18.1275 [17] Grzegorz Karch, Kanako Suzuki, Jacek Zienkiewicz. Finite-time blowup of solutions to some activator-inhibitor systems. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4997-5010. doi: 10.3934/dcds.2016016 [18] Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050 [19] Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115 [20] Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248

2020 Impact Factor: 1.801