-
Previous Article
Talent hold cost minimization in film production
- JIMO Home
- This Issue
-
Next Article
Preservation of deteriorating seasonal products with stock-dependent consumption rate and shortages
The finite-time ruin probability for an inhomogeneous renewal risk model
Faculty of Mathematics and and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania |
In the paper, we give an asymptotic formula for the finite-time ruin probability in a generalized renewal risk model. We consider the renewal risk model with independent strongly subexponential claim sizes and independent not necessarily identically distributed inter occurrence times having finite variances. We find out that the asymptotic formula for the finite-time ruin probability is insensitive to the homogeneity of inter-occurrence times.
References:
[1] |
E. Sparre Andersen, On the collective theory of risk in case of contagion between claims, Transactions of the XV-th International Congress of Actuaries, 2 (1957). Google Scholar |
[2] |
I. M. Andrulytė, E. Bernackaitė, D. Kievinaitė and J. Šiaulys,
A Lundberg-type inequality for an inhomogeneous renewal risk model, Modern Stochastics: Theory and Applications, 2 (2015), 173-184.
|
[3] |
E. Bernackaitė and J. Šiaulys,
The exponential moment tail of inhomogeneous renewal process, Statistics and Probability Letters, 97 (2015), 9-15.
doi: 10.1016/j.spl.2014.10.018. |
[4] |
N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987.
doi: 10.1017/CBO9780511721434. |
[5] |
V. P. Chistyakov (Čistjakov),
A theorem on sums of independent positive random variables and its applications to branching processes, Theory of Probability and Its Applications (Teoriya Veroyatnostei i ee Primeneniya), 9 (1964), 640-648.
|
[6] |
P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, New York, 1997.
doi: 10.1007/978-3-642-33483-2. |
[7] |
P. Embrechts and N. Veraverbeke,
Estimates for the probability of ruin with special emphasis on the possibility of large claims, Insurance: Mathematics and Economics, 1 (1984), 55-72.
doi: 10.1016/0167-6687(82)90021-X. |
[8] |
S. Foss, D. Korshunov and S. Zachary, An Introduction to Heavy-Tailed and Subexponential Distributions, Springer, 2011.
doi: 10.1007/978-1-4419-9473-8. |
[9] |
R. Kaas and Q. Tang,
Note on the tail behavior of random walk maxima with heavy tails and negative drift, North American Actuarial Journal, 7 (2003), 57-61.
doi: 10.1080/10920277.2003.10596103. |
[10] |
J. Kočetova, R. Leipus and J. Šiaulys,
A property of the renewal counting process with application to the finite-time ruin probability, Lithuanian Mathematical Journal, 49 (2009), 55-61.
doi: 10.1007/s10986-009-9032-1. |
[11] |
D. Korshunov,
Large-deviation probabilities for maxima of sums of independent random variables with negative mean and subexponential distribution, Theory of Probability and its Applications, 46 (2002), 355-366.
doi: 10.1137/S0040585X97979019. |
[12] |
R. Leipus and J. Šiaulys,
Asymptotic behaviour of the finite-time ruin probability in renewal risk models, Applied Stochastic Models in Bussines and Industry, 25 (2009), 309-321.
doi: 10.1002/asmb.747. |
[13] |
V. V. Petrov, Limit Theorems of Probability Theory, Clarendon Press, Oxford, 1995. |
[14] |
E. J. G. Pitman,
Subexponential distribution functions, Journal of Australian Mathematical Society (Series A), 29 (1980), 337-347.
doi: 10.1017/S1446788700021340. |
[15] |
A. N. Shiryaev, Probability, Springer, 1996.
doi: 10.1007/978-1-4757-2539-1. |
[16] |
W. L. Smith,
On the elementary renewal theorem for non -identicaly distributed variables, Pacific Journal of Mathematics, 14 (1964), 673-699.
doi: 10.2140/pjm.1964.14.673. |
[17] |
Q. Tang,
Asymptotics for the finite time ruin probability in the renewal model with consistent variation, Stochastic Models, 20 (2004), 281-297.
doi: 10.1081/STM-200025739. |
[18] |
N. Veraverbeke,
Asymptotic behavior of Wiener-Hopf factors of a random walk, Stochastic Processes and their Applications, 5 (1977), 27-37.
doi: 10.1016/0304-4149(77)90047-3. |
[19] |
Y. Wang, Z. Cui, K. Wang and X. Ma,
Uniform asymptotics of the finite-time ruin probability for all times, Journal of Mathematical Analysis and Applications, 390 (2012), 208-223.
doi: 10.1016/j.jmaa.2012.01.025. |
show all references
References:
[1] |
E. Sparre Andersen, On the collective theory of risk in case of contagion between claims, Transactions of the XV-th International Congress of Actuaries, 2 (1957). Google Scholar |
[2] |
I. M. Andrulytė, E. Bernackaitė, D. Kievinaitė and J. Šiaulys,
A Lundberg-type inequality for an inhomogeneous renewal risk model, Modern Stochastics: Theory and Applications, 2 (2015), 173-184.
|
[3] |
E. Bernackaitė and J. Šiaulys,
The exponential moment tail of inhomogeneous renewal process, Statistics and Probability Letters, 97 (2015), 9-15.
doi: 10.1016/j.spl.2014.10.018. |
[4] |
N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987.
doi: 10.1017/CBO9780511721434. |
[5] |
V. P. Chistyakov (Čistjakov),
A theorem on sums of independent positive random variables and its applications to branching processes, Theory of Probability and Its Applications (Teoriya Veroyatnostei i ee Primeneniya), 9 (1964), 640-648.
|
[6] |
P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, New York, 1997.
doi: 10.1007/978-3-642-33483-2. |
[7] |
P. Embrechts and N. Veraverbeke,
Estimates for the probability of ruin with special emphasis on the possibility of large claims, Insurance: Mathematics and Economics, 1 (1984), 55-72.
doi: 10.1016/0167-6687(82)90021-X. |
[8] |
S. Foss, D. Korshunov and S. Zachary, An Introduction to Heavy-Tailed and Subexponential Distributions, Springer, 2011.
doi: 10.1007/978-1-4419-9473-8. |
[9] |
R. Kaas and Q. Tang,
Note on the tail behavior of random walk maxima with heavy tails and negative drift, North American Actuarial Journal, 7 (2003), 57-61.
doi: 10.1080/10920277.2003.10596103. |
[10] |
J. Kočetova, R. Leipus and J. Šiaulys,
A property of the renewal counting process with application to the finite-time ruin probability, Lithuanian Mathematical Journal, 49 (2009), 55-61.
doi: 10.1007/s10986-009-9032-1. |
[11] |
D. Korshunov,
Large-deviation probabilities for maxima of sums of independent random variables with negative mean and subexponential distribution, Theory of Probability and its Applications, 46 (2002), 355-366.
doi: 10.1137/S0040585X97979019. |
[12] |
R. Leipus and J. Šiaulys,
Asymptotic behaviour of the finite-time ruin probability in renewal risk models, Applied Stochastic Models in Bussines and Industry, 25 (2009), 309-321.
doi: 10.1002/asmb.747. |
[13] |
V. V. Petrov, Limit Theorems of Probability Theory, Clarendon Press, Oxford, 1995. |
[14] |
E. J. G. Pitman,
Subexponential distribution functions, Journal of Australian Mathematical Society (Series A), 29 (1980), 337-347.
doi: 10.1017/S1446788700021340. |
[15] |
A. N. Shiryaev, Probability, Springer, 1996.
doi: 10.1007/978-1-4757-2539-1. |
[16] |
W. L. Smith,
On the elementary renewal theorem for non -identicaly distributed variables, Pacific Journal of Mathematics, 14 (1964), 673-699.
doi: 10.2140/pjm.1964.14.673. |
[17] |
Q. Tang,
Asymptotics for the finite time ruin probability in the renewal model with consistent variation, Stochastic Models, 20 (2004), 281-297.
doi: 10.1081/STM-200025739. |
[18] |
N. Veraverbeke,
Asymptotic behavior of Wiener-Hopf factors of a random walk, Stochastic Processes and their Applications, 5 (1977), 27-37.
doi: 10.1016/0304-4149(77)90047-3. |
[19] |
Y. Wang, Z. Cui, K. Wang and X. Ma,
Uniform asymptotics of the finite-time ruin probability for all times, Journal of Mathematical Analysis and Applications, 390 (2012), 208-223.
doi: 10.1016/j.jmaa.2012.01.025. |
[1] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[2] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[3] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[4] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[5] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[6] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[7] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[8] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[9] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[10] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[11] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[12] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[13] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[14] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[15] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[16] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[17] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[18] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[19] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[20] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]