January  2017, 13(1): 237-249. doi: 10.3934/jimo.2016014

Efficiency measures in fuzzy data envelopment analysis with common weights

1. 

Department of International Business, Kao Yuan University, Kaohsiung, 82151, Taiwan

2. 

Department of Mechanical and Automation Engineering, Ⅰ-Shou University, Kaohsiung, 84001, Taiwan

3. 

Department of Applied Mathematics, National Chiayi University, Chiayi, 60004, Taiwan

Received  January 2015 Revised  September 2015 Published  March 2016

This work considers providing a common base for measuring the relative efficiency for all the decision-making units (DMUs) with multiple fuzzy inputs and outputs under the fuzzy data envelopment analysis (DEA) framework. It is shown that the fuzzy DEA model with common weights can be reduced into an auxiliary bi-objective fuzzy optimization problem by considering the most and the least favorable conditions simultaneously. An algorithm with the implementation issue for finding the compromise solution of the fuzzy DEA program is developed. A numerical example is included for illustration and comparison purpose. Our results show that the proposed approach is able to provide decision makers the flexibility in measuring the relative efficiency for DMUs with fuzzy inputs and outputs, which not only differentiates efficient units on a common base but also detects some abnormal efficiency scores calculated from other existing methods.

Citation: Cheng-Kai Hu, Fung-Bao Liu, Cheng-Feng Hu. Efficiency measures in fuzzy data envelopment analysis with common weights. Journal of Industrial and Management Optimization, 2017, 13 (1) : 237-249. doi: 10.3934/jimo.2016014
References:
[1]

A. Charnes and W. W. Cooper, The non-Archimedean CCR ratio for efficiency analysis: A rejoinder to Boyd and Fare, European Journal of Operational Research, 15 (1984), 333-334.  doi: 10.1016/0377-2217(84)90102-4.

[2]

W. W. CooperK. S. Park and G. Yu, IDEA and AR-IDEA: Models for dealing with imprecise data in DEA, Management Science, 45 (1999), 597-607.  doi: 10.1287/mnsc.45.4.597.

[3]

D. K. Despotis and Y. G. Smirlis, Data envelopment analysis with imprecise data, European Journal of Operational Research, 140 (2002), 24-36.  doi: 10.1016/S0377-2217(01)00200-4.

[4]

R. Green and J. Doyle, Improving discernment in DEA using profiling: A comment, Omega, 24 (1995), 365-366.  doi: 10.1016/0305-0483(96)86991-X.

[5]

A. Hatami-MarbiniA. Emrouznejad and M. Tavana, A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making, European Journal of Operational Research, 214 (2011), 457-472.  doi: 10.1016/j.ejor.2011.02.001.

[6]

C. L. HwangY. J. Lai and T. Y. Liu, A new approach for multiple objective decision making, Computers Ops. Res., 20 (1993), 889-899.  doi: 10.1016/0305-0548(93)90109-V.

[7]

C. L. Hwang and K. Yoon, Multiple Attribute Decision Making: Methods and Applications, Springer, Heidelberg, 1981.

[8]

C. Kao and H.-T. Hung, Data envelopment analysis with common weights: the compromise solution approach, Journal of the Operational Research Society, 56 (2005), 1196-1203.  doi: 10.1057/palgrave.jors.2601924.

[9]

C. Kao and S.-T. Liu, Data envelopment analysis with missing data: an application to university libraries in Taiwan, Journal of the Operational Research Society, 51 (2000), 897-905. 

[10]

Y. -J. Lai and C. -L. Hwang, Fuzzy Multiple Objective Decision Making: Methods and Applications, Springer, Berlin, 1994. doi: 10.1007/978-3-642-57949-3.

[11]

D. Jones, M. Tamiz and J. Ries, New Developments in Multiple Objective and Goal Programming, Springer-Verlag, Heidelberg, 2010. doi: 10.1007/978-3-642-10354-4.

[12]

Y. -J. Lai and C. -L. Hwang, Fuzzy Mathematical Programming: Methods and Applications, Springer-Verlag, New York, 1992. doi: 10.1007/978-3-642-48753-8_3.

[13]

S. LertworasirikulS.-C. FangH. L. W. Nuttle and J. A. Joines, Fuzzy BCC model for data envelopment analysis, Fuzzy Optimization and Decision Making, 2 (2003), 337-358.  doi: 10.1023/B:FODM.0000003953.39947.b4.

[14]

S. LertworasirikulS.-C. FangJ. A. Joines and H. L. W. Nuttle, Fuzzy data envelopment analysis (DEA): a possibility approach, Fuzzy Sets and Systems, 139 (2003), 379-394.  doi: 10.1016/S0165-0114(02)00484-0.

[15]

M. RamezaniM. Bashiri and A. C. Atkinson, A goal programming-TOPSIS approach to multiple response optimization using the concepts of non-dominated solutions and prediction intervals, Expert Systems with Applications, 38 (2011), 9557-9563.  doi: 10.1016/j.eswa.2011.01.139.

[16]

T. RollW. D. Cook and B. Golany, Controlling factor weights in data envelopment analysis, IIE Trans, 23 (1991), 2-9.  doi: 10.1080/07408179108963835.

[17]

M. Sakawa, Fuzzy Sets and Interactive Multiobjective Optimizations, Plenum Press, New York, 1993. doi: 10.1007/978-1-4899-1633-4.

[18]

S. M. SaatiA. Memariani and G. R. Jahanshahloo, Efficiency analysis and ranking of DMUs with fuzzy data, Fuzzy Optimization and Decision Making, 3 (2002), 255-267. 

[19]

J. K. Sengupta, A fuzzy systems approach in data envelopment analysis, Computers and Mathematics with Applications, 24 (1992), 259-266.  doi: 10.1016/0898-1221(92)90203-T.

[20]

H. Späth, Mathematical Algorithmsf or Linear Regression, Academic Press, Boston, 1991.

[21]

R. E. Steuer, Multiple Criteria Optimization: Theory, Computation, and Application, Wiley, New York, 1986.

[22]

T. J. Stewart, Data envelopment analysis and multiple criteria decision making: A response, Omega, 22 (1994), 205-206.  doi: 10.1016/0305-0483(94)90079-5.

[23]

K. Yoon, A reconciliation among discrete compromise solutions, J. Opl Res. Sot., 38 (1987), 277-286. 

[24] P. L. Yu, Multiple-Criteria Decision Making: Concepts, Techniques, and Extensions, Plenum Press, New York, 1985.  doi: 10.1007/978-1-4684-8395-6.
[25]

M. Zeleny, Multiple Criteria Decision Making McGraw-Hill, New York, 1982.

[26]

H. -J. Zimmermann, Fuzzy Set Theory and Its Applications, 2nd edition, Kluwer Academic, Dordrecht, 1991.

show all references

References:
[1]

A. Charnes and W. W. Cooper, The non-Archimedean CCR ratio for efficiency analysis: A rejoinder to Boyd and Fare, European Journal of Operational Research, 15 (1984), 333-334.  doi: 10.1016/0377-2217(84)90102-4.

[2]

W. W. CooperK. S. Park and G. Yu, IDEA and AR-IDEA: Models for dealing with imprecise data in DEA, Management Science, 45 (1999), 597-607.  doi: 10.1287/mnsc.45.4.597.

[3]

D. K. Despotis and Y. G. Smirlis, Data envelopment analysis with imprecise data, European Journal of Operational Research, 140 (2002), 24-36.  doi: 10.1016/S0377-2217(01)00200-4.

[4]

R. Green and J. Doyle, Improving discernment in DEA using profiling: A comment, Omega, 24 (1995), 365-366.  doi: 10.1016/0305-0483(96)86991-X.

[5]

A. Hatami-MarbiniA. Emrouznejad and M. Tavana, A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making, European Journal of Operational Research, 214 (2011), 457-472.  doi: 10.1016/j.ejor.2011.02.001.

[6]

C. L. HwangY. J. Lai and T. Y. Liu, A new approach for multiple objective decision making, Computers Ops. Res., 20 (1993), 889-899.  doi: 10.1016/0305-0548(93)90109-V.

[7]

C. L. Hwang and K. Yoon, Multiple Attribute Decision Making: Methods and Applications, Springer, Heidelberg, 1981.

[8]

C. Kao and H.-T. Hung, Data envelopment analysis with common weights: the compromise solution approach, Journal of the Operational Research Society, 56 (2005), 1196-1203.  doi: 10.1057/palgrave.jors.2601924.

[9]

C. Kao and S.-T. Liu, Data envelopment analysis with missing data: an application to university libraries in Taiwan, Journal of the Operational Research Society, 51 (2000), 897-905. 

[10]

Y. -J. Lai and C. -L. Hwang, Fuzzy Multiple Objective Decision Making: Methods and Applications, Springer, Berlin, 1994. doi: 10.1007/978-3-642-57949-3.

[11]

D. Jones, M. Tamiz and J. Ries, New Developments in Multiple Objective and Goal Programming, Springer-Verlag, Heidelberg, 2010. doi: 10.1007/978-3-642-10354-4.

[12]

Y. -J. Lai and C. -L. Hwang, Fuzzy Mathematical Programming: Methods and Applications, Springer-Verlag, New York, 1992. doi: 10.1007/978-3-642-48753-8_3.

[13]

S. LertworasirikulS.-C. FangH. L. W. Nuttle and J. A. Joines, Fuzzy BCC model for data envelopment analysis, Fuzzy Optimization and Decision Making, 2 (2003), 337-358.  doi: 10.1023/B:FODM.0000003953.39947.b4.

[14]

S. LertworasirikulS.-C. FangJ. A. Joines and H. L. W. Nuttle, Fuzzy data envelopment analysis (DEA): a possibility approach, Fuzzy Sets and Systems, 139 (2003), 379-394.  doi: 10.1016/S0165-0114(02)00484-0.

[15]

M. RamezaniM. Bashiri and A. C. Atkinson, A goal programming-TOPSIS approach to multiple response optimization using the concepts of non-dominated solutions and prediction intervals, Expert Systems with Applications, 38 (2011), 9557-9563.  doi: 10.1016/j.eswa.2011.01.139.

[16]

T. RollW. D. Cook and B. Golany, Controlling factor weights in data envelopment analysis, IIE Trans, 23 (1991), 2-9.  doi: 10.1080/07408179108963835.

[17]

M. Sakawa, Fuzzy Sets and Interactive Multiobjective Optimizations, Plenum Press, New York, 1993. doi: 10.1007/978-1-4899-1633-4.

[18]

S. M. SaatiA. Memariani and G. R. Jahanshahloo, Efficiency analysis and ranking of DMUs with fuzzy data, Fuzzy Optimization and Decision Making, 3 (2002), 255-267. 

[19]

J. K. Sengupta, A fuzzy systems approach in data envelopment analysis, Computers and Mathematics with Applications, 24 (1992), 259-266.  doi: 10.1016/0898-1221(92)90203-T.

[20]

H. Späth, Mathematical Algorithmsf or Linear Regression, Academic Press, Boston, 1991.

[21]

R. E. Steuer, Multiple Criteria Optimization: Theory, Computation, and Application, Wiley, New York, 1986.

[22]

T. J. Stewart, Data envelopment analysis and multiple criteria decision making: A response, Omega, 22 (1994), 205-206.  doi: 10.1016/0305-0483(94)90079-5.

[23]

K. Yoon, A reconciliation among discrete compromise solutions, J. Opl Res. Sot., 38 (1987), 277-286. 

[24] P. L. Yu, Multiple-Criteria Decision Making: Concepts, Techniques, and Extensions, Plenum Press, New York, 1985.  doi: 10.1007/978-1-4684-8395-6.
[25]

M. Zeleny, Multiple Criteria Decision Making McGraw-Hill, New York, 1982.

[26]

H. -J. Zimmermann, Fuzzy Set Theory and Its Applications, 2nd edition, Kluwer Academic, Dordrecht, 1991.

Table 1.  Input and output data in [2]
DMUInputOutput
jExactImpreciseExactOrdinal
x1jx2jLx2jUy1jy2j
11000.60.720004
21500.80.910002
31501112005
42000.70.89001
5200116003
DMUInputOutput
jExactImpreciseExactOrdinal
x1jx2jLx2jUy1jy2j
11000.60.720004
21500.80.910002
31501112005
42000.70.89001
5200116003
Table 2.  The positive ideal solution $(E^{\ast}_j) $ and the negative ideal solution $(E^{-}_j)$
DMU
j
Ej*Ej
112.001 * 10−7
20.8759.01 * 10−8
311.201 * 10−7
419.01 * 10−8
50.76.01 * 10−8
DMU
j
Ej*Ej
112.001 * 10−7
20.8759.01 * 10−8
311.201 * 10−7
419.01 * 10−8
50.76.01 * 10−8
Table 3.  Efficiency scores and the associated rankings (in parentheses) calculated from different methods
DMU
j
Fuzy CCRIDEA approachModel (6) in [3]p = 1p = 2p = ∞
11(1)1(1)1(1)1(1)1(1)1(1)
20.875(4)0.875(4)0.875(4)0.875(4)0.7825(4)0.7563(4)
31(1)1(1)1(1)1(1)0.9233(2)0.9062(2)
41(1)1(1)1(1)1(1)0.9083(3)0.8943(3)
50.7(5)0.7(5)0.7(5)0.7(5)0.6239(5)0.6022(5)
DMU
j
Fuzy CCRIDEA approachModel (6) in [3]p = 1p = 2p = ∞
11(1)1(1)1(1)1(1)1(1)1(1)
20.875(4)0.875(4)0.875(4)0.875(4)0.7825(4)0.7563(4)
31(1)1(1)1(1)1(1)0.9233(2)0.9062(2)
41(1)1(1)1(1)1(1)0.9083(3)0.8943(3)
50.7(5)0.7(5)0.7(5)0.7(5)0.6239(5)0.6022(5)
[1]

Saber Saati, Adel Hatami-Marbini, Per J. Agrell, Madjid Tavana. A common set of weight approach using an ideal decision making unit in data envelopment analysis. Journal of Industrial and Management Optimization, 2012, 8 (3) : 623-637. doi: 10.3934/jimo.2012.8.623

[2]

Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046

[3]

Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations and Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022

[4]

Sedighe Asghariniya, Hamed Zhiani Rezai, Saeid Mehrabian. Resource allocation: A common set of weights model. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 257-273. doi: 10.3934/naco.2020001

[5]

Yihong Xu, Zhenhua Peng. Higher-order sensitivity analysis in set-valued optimization under Henig efficiency. Journal of Industrial and Management Optimization, 2017, 13 (1) : 313-327. doi: 10.3934/jimo.2016019

[6]

Habibe Zare Haghighi, Sajad Adeli, Farhad Hosseinzadeh Lotfi, Gholam Reza Jahanshahloo. Revenue congestion: An application of data envelopment analysis. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1311-1322. doi: 10.3934/jimo.2016.12.1311

[7]

Pooja Bansal, Aparna Mehra. Integrated dynamic interval data envelopment analysis in the presence of integer and negative data. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1339-1363. doi: 10.3934/jimo.2021023

[8]

Mahdi Mahdiloo, Abdollah Noorizadeh, Reza Farzipoor Saen. Developing a new data envelopment analysis model for customer value analysis. Journal of Industrial and Management Optimization, 2011, 7 (3) : 531-558. doi: 10.3934/jimo.2011.7.531

[9]

Runqin Hao, Guanwen Zhang, Dong Li, Jie Zhang. Data modeling analysis on removal efficiency of hexavalent chromium. Mathematical Foundations of Computing, 2019, 2 (3) : 203-213. doi: 10.3934/mfc.2019014

[10]

Mohammad Afzalinejad, Zahra Abbasi. A slacks-based model for dynamic data envelopment analysis. Journal of Industrial and Management Optimization, 2019, 15 (1) : 275-291. doi: 10.3934/jimo.2018043

[11]

Hasan Hosseini-Nasab, Vahid Ettehadi. Development of opened-network data envelopment analysis models under uncertainty. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022027

[12]

Pooja Bansal. Sequential Malmquist-Luenberger productivity index for interval data envelopment analysis. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022058

[13]

Gholam Hassan Shirdel, Somayeh Ramezani-Tarkhorani. A new method for ranking decision making units using common set of weights: A developed criterion. Journal of Industrial and Management Optimization, 2020, 16 (2) : 633-651. doi: 10.3934/jimo.2018171

[14]

Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control and Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35

[15]

Hong-Zhi Wei, Chun-Rong Chen. Three concepts of robust efficiency for uncertain multiobjective optimization problems via set order relations. Journal of Industrial and Management Optimization, 2019, 15 (2) : 705-721. doi: 10.3934/jimo.2018066

[16]

Zhiang Zhou, Xinmin Yang, Kequan Zhao. $E$-super efficiency of set-valued optimization problems involving improvement sets. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1031-1039. doi: 10.3934/jimo.2016.12.1031

[17]

Ali Hadi, Saeid Mehrabian. A two-stage data envelopment analysis approach to solve extended transportation problem with non-homogenous costs. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022006

[18]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial and Management Optimization, 2022, 18 (1) : 439-456. doi: 10.3934/jimo.2020162

[19]

Alireza Ghaffari Hadigheh, Tamás Terlaky. Generalized support set invariancy sensitivity analysis in linear optimization. Journal of Industrial and Management Optimization, 2006, 2 (1) : 1-18. doi: 10.3934/jimo.2006.2.1

[20]

Behrouz Kheirfam, Kamal mirnia. Comments on ''Generalized support set invariancy sensitivity analysis in linear optimization''. Journal of Industrial and Management Optimization, 2008, 4 (3) : 611-616. doi: 10.3934/jimo.2008.4.611

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (334)
  • HTML views (365)
  • Cited by (2)

Other articles
by authors

[Back to Top]