-
Previous Article
Service product pricing strategies based on time-sensitive customer choice behavior
- JIMO Home
- This Issue
-
Next Article
A linear-quadratic control problem of uncertain discrete-time switched systems
Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations
1. | College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, China |
2. | School of Mathematics and Statistics, Chongqing Three Gorges University, Wanzhou, 404100, China |
In this paper, we consider a multivariate spectral DY-type projection method for solving nonlinear monotone equations with convex constraints. The search direction of the proposed method combines those of the multivariate spectral gradient method and DY conjugate gradient method. With no need for the derivative information, the proposed method is very suitable to solve large-scale nonsmooth monotone equations. Under appropriate conditions, we prove the global convergence and R-linear convergence rate of the proposed method. The preliminary numerical results also indicate that the proposed method is robust and effective.
References:
[1] |
J. M. Barizilai and M. Borwein,
Two point step size gradient methods, IMA Journal on Numerical Analysis, 8 (1988), 141-148.
doi: 10.1093/imanum/8.1.141. |
[2] |
H. H. Bauschke and P. L. Combettes,
A weak-to-strong convergence principle for Fejèer-monotone methods in Hilbert spaces, Mathematical Methods and Operations Research, 26 (2001), 248-264.
doi: 10.1287/moor.26.2.248.10558. |
[3] |
S. Bellavia and B. Morini,
A globally convergent Newton-GMRES subspace method for systems of nonlinear equations, SIAM Journal on Scientific Computing, 23 (2001), 940-960.
doi: 10.1137/S1064827599363976. |
[4] |
Y. H. Dai and Y. X. Yuan,
A nonlinear conjugate gradient with a strong global convergence property, SIAM Journal on Optimization, 10 (1999), 177-182.
doi: 10.1137/S1052623497318992. |
[5] |
J. E. Dennis and J. J. Moré,
A characterization of superlinear convergence and its application to quasi-Newton methods, Mathematics of Computation, 28 (1974), 549-560.
doi: 10.1090/S0025-5718-1974-0343581-1. |
[6] |
J. E. Dennis and J. J. Moré,
Quasi-Newton method, motivation and theory, SIAM Review, 19 (1997), 46-89.
doi: 10.1137/1019005. |
[7] |
S. P. Dirkse and M. C. Ferris,
MCPLIB: A collection of nonlinear mixed complementarity problems, Optimization Methods and Software, 5 (1995), 319-345.
doi: 10.1080/10556789508805619. |
[8] |
L. Han, G. H. Yu and L. T. Guan,
Multivariate spectral gradient method for unconstrained optimization, Applied Mathematics and Computation, 201 (2008), 621-630.
doi: 10.1016/j.amc.2007.12.054. |
[9] |
A. N. Iusem and M. V. Solodov,
Newton-type methods with generalized distances for constrained optmization, Optimization, 41 (1997), 257-278.
doi: 10.1080/02331939708844339. |
[10] |
W. La Cruz and M. Raydan,
Nonmonotone spectral methods for large-scale nonlinear systems, Optimization Methods and Software, 18 (2003), 583-599.
doi: 10.1080/10556780310001610493. |
[11] |
W. La Cruz, J. M. Mart$\acute{i}$nez and M. Raydan,
Spectral residual method without gradient minformation for solving large-scale nonlinear systems of equations, Mathematics of Computation, 75 (2006), 1429-1448.
doi: 10.1090/S0025-5718-06-01840-0. |
[12] |
Q. N. Li and D. H. Li,
A class of derivative-free methods for large-scale nonlinear monotone equations, IMA Journal on Numerical Analysis, 31 (2011), 1625-1635.
doi: 10.1093/imanum/drq015. |
[13] |
K. Meintjes and A. P. Morgan,
A methodology for solving chemical equilibrium systems, Applied Mathematics and Computation, 22 (1987), 333-361.
doi: 10.1016/0096-3003(87)90076-2. |
[14] |
K. Meintjes and A. P. Morgan,
Chemical equilibrium systems as numerical test problems, ACM Transactions on Mathematical Software, 16 (1990), 143-151.
doi: 10.1145/78928.78930. |
[15] |
L. Qi and J. Sun,
A nonsmooth version of Newton's method, Mathematical Programming, 58 (1999), 353-367.
doi: 10.1007/BF01581275. |
[16] |
M. V. Solodov and B. F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations, in Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Applied Optimization, 22, Kluwer Acad. Publ., Dordrecht, 1999, 355–369.
doi: 10.1007/978-1-4757-6388-1_18. |
[17] |
C. W. Wang, Y. J. Wang and C. L. Xu,
A projection method for a system of nonlinear monotone equations with convex constraints, Mathematical Methods and Operations Research, 66 (2007), 33-46.
doi: 10.1007/s00186-006-0140-y. |
[18] |
A. J. Wood and B. F. Wollenberg, Power Generations Operations and Control, Wiley, New York, 1996. Google Scholar |
[19] |
N. Yamashita and M. Fukushima,
On the rate of convergence of the Levenberg-Marquardt method, Computing, 15 (2001), 239-249.
doi: 10.1007/978-3-7091-6217-0_18. |
[20] |
N. Yamashita and M. Fukushima,
Modified Newton methods for sovling a semismooth reformulation of monotone complementary problems, Mathematical Programming, 76 (1997), 469-491.
doi: 10.1007/BF02614394. |
[21] |
Z. S. Yu, J. Sun and Y. Qin,
A multivariate spectral projected gradient method for bound constrained optimization, Journal of Computational and Applied Mathematics, 235 (2011), 2263-2269.
doi: 10.1016/j.cam.2010.10.023. |
[22] |
G. H. Yu, S. Z. Niu and J. H. Ma,
Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints, Journal of Industrial and Management Optimization, 9 (2013), 117-129.
doi: 10.3934/jimo.2013.9.117. |
[23] |
L. Zhang and W. J. Zhou,
Spectral gradient projection method for solving nonlinear monotone equations, Journal of Computational and Applied Mathematics, 196 (2006), 478-484.
doi: 10.1016/j.cam.2005.10.002. |
show all references
References:
[1] |
J. M. Barizilai and M. Borwein,
Two point step size gradient methods, IMA Journal on Numerical Analysis, 8 (1988), 141-148.
doi: 10.1093/imanum/8.1.141. |
[2] |
H. H. Bauschke and P. L. Combettes,
A weak-to-strong convergence principle for Fejèer-monotone methods in Hilbert spaces, Mathematical Methods and Operations Research, 26 (2001), 248-264.
doi: 10.1287/moor.26.2.248.10558. |
[3] |
S. Bellavia and B. Morini,
A globally convergent Newton-GMRES subspace method for systems of nonlinear equations, SIAM Journal on Scientific Computing, 23 (2001), 940-960.
doi: 10.1137/S1064827599363976. |
[4] |
Y. H. Dai and Y. X. Yuan,
A nonlinear conjugate gradient with a strong global convergence property, SIAM Journal on Optimization, 10 (1999), 177-182.
doi: 10.1137/S1052623497318992. |
[5] |
J. E. Dennis and J. J. Moré,
A characterization of superlinear convergence and its application to quasi-Newton methods, Mathematics of Computation, 28 (1974), 549-560.
doi: 10.1090/S0025-5718-1974-0343581-1. |
[6] |
J. E. Dennis and J. J. Moré,
Quasi-Newton method, motivation and theory, SIAM Review, 19 (1997), 46-89.
doi: 10.1137/1019005. |
[7] |
S. P. Dirkse and M. C. Ferris,
MCPLIB: A collection of nonlinear mixed complementarity problems, Optimization Methods and Software, 5 (1995), 319-345.
doi: 10.1080/10556789508805619. |
[8] |
L. Han, G. H. Yu and L. T. Guan,
Multivariate spectral gradient method for unconstrained optimization, Applied Mathematics and Computation, 201 (2008), 621-630.
doi: 10.1016/j.amc.2007.12.054. |
[9] |
A. N. Iusem and M. V. Solodov,
Newton-type methods with generalized distances for constrained optmization, Optimization, 41 (1997), 257-278.
doi: 10.1080/02331939708844339. |
[10] |
W. La Cruz and M. Raydan,
Nonmonotone spectral methods for large-scale nonlinear systems, Optimization Methods and Software, 18 (2003), 583-599.
doi: 10.1080/10556780310001610493. |
[11] |
W. La Cruz, J. M. Mart$\acute{i}$nez and M. Raydan,
Spectral residual method without gradient minformation for solving large-scale nonlinear systems of equations, Mathematics of Computation, 75 (2006), 1429-1448.
doi: 10.1090/S0025-5718-06-01840-0. |
[12] |
Q. N. Li and D. H. Li,
A class of derivative-free methods for large-scale nonlinear monotone equations, IMA Journal on Numerical Analysis, 31 (2011), 1625-1635.
doi: 10.1093/imanum/drq015. |
[13] |
K. Meintjes and A. P. Morgan,
A methodology for solving chemical equilibrium systems, Applied Mathematics and Computation, 22 (1987), 333-361.
doi: 10.1016/0096-3003(87)90076-2. |
[14] |
K. Meintjes and A. P. Morgan,
Chemical equilibrium systems as numerical test problems, ACM Transactions on Mathematical Software, 16 (1990), 143-151.
doi: 10.1145/78928.78930. |
[15] |
L. Qi and J. Sun,
A nonsmooth version of Newton's method, Mathematical Programming, 58 (1999), 353-367.
doi: 10.1007/BF01581275. |
[16] |
M. V. Solodov and B. F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations, in Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Applied Optimization, 22, Kluwer Acad. Publ., Dordrecht, 1999, 355–369.
doi: 10.1007/978-1-4757-6388-1_18. |
[17] |
C. W. Wang, Y. J. Wang and C. L. Xu,
A projection method for a system of nonlinear monotone equations with convex constraints, Mathematical Methods and Operations Research, 66 (2007), 33-46.
doi: 10.1007/s00186-006-0140-y. |
[18] |
A. J. Wood and B. F. Wollenberg, Power Generations Operations and Control, Wiley, New York, 1996. Google Scholar |
[19] |
N. Yamashita and M. Fukushima,
On the rate of convergence of the Levenberg-Marquardt method, Computing, 15 (2001), 239-249.
doi: 10.1007/978-3-7091-6217-0_18. |
[20] |
N. Yamashita and M. Fukushima,
Modified Newton methods for sovling a semismooth reformulation of monotone complementary problems, Mathematical Programming, 76 (1997), 469-491.
doi: 10.1007/BF02614394. |
[21] |
Z. S. Yu, J. Sun and Y. Qin,
A multivariate spectral projected gradient method for bound constrained optimization, Journal of Computational and Applied Mathematics, 235 (2011), 2263-2269.
doi: 10.1016/j.cam.2010.10.023. |
[22] |
G. H. Yu, S. Z. Niu and J. H. Ma,
Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints, Journal of Industrial and Management Optimization, 9 (2013), 117-129.
doi: 10.3934/jimo.2013.9.117. |
[23] |
L. Zhang and W. J. Zhou,
Spectral gradient projection method for solving nonlinear monotone equations, Journal of Computational and Applied Mathematics, 196 (2006), 478-484.
doi: 10.1016/j.cam.2005.10.002. |
Dim | Initial points | MSGP method | Algorithm 2.1 |
1000 | X1 | 7/22/0.06/1.31135e-007 | 13/40/0.05/3.38669e-006 |
X2 | 2/7/0.05/0.00000e+000 | 4/13/0.03/0.00000e+000 | |
X3 | 11/34/0.08/2.19964e-007 | 3/40/0.05/3.36081e-006 | |
X4 | 3/10/0.05/0.00000e+000 | 6/19/0.05/0.00000e+000 | |
X5 | 11/34/0.09/8.93938e-008 | 8/25/0.06/6.13420e-006 | |
3000 | X1 | 2/7/0.05/0.00000e+000 | 13/40/0.06/5.81725e-006 |
X2 | 11/34/0.25/4.90071e-006 | 4/13/0.03/0.00000e+000 | |
X3 | 3/10/0.06/0.00000e+000 | 13/40/0.08/5.80007e-006 | |
X4 | 11/34/0.30/2.69613e-006 | 6/19/0.05/0.00000e+000 | |
X5 | 7/22/0.31/1.31003e-007 | 10/31/0.42/2.65195e-006 | |
5000 | X1 | 2/7/0.05/0.00000e+000 | 13/40/0.08/7.49753e-006 |
X2 | 11/34/0.53/7.57273e-006 | 4/13/0.05/ 0.00000e+000 | |
X3 | 3/10/0.13/0.00000e+000 | 13/40/0.09/7.48340e-006 | |
X4 | 12/37/0.78/8.40744e-008 | 6/19/0.05/0.00000e+000 | |
X5 | 7/22/0.64/1.30968e-007 | 10/31/1.05/3.78182e-006 | |
10000 | X1 | 2/7/0.06/0.00000e+000 | 14/43/0.14/2.89200e-006 |
X2 | 11/34/1.77/6.56131e-006 | 4/13/0.06/0.00000e+000 | |
X3 | 3/10/0.36/0.00000e+000 | 14/43/0.16/2.88949e-006 | |
X4 | 13/40/3.00/6.90437e-008 | 6/19/0.08/0.00000e+000 | |
X5 | 7/22/2.23/1.30940e-007 | 10/31/3.20/5.11269e-006 | |
12000 | X1 | 2/7/0.06/0.00000e+000 | 14/43/0.17/3.16733e-006 |
X2 | 11/34/2.48/6.34881e-006 | 4/13/0.06/0.00000e+000 | |
X3 | 3/10/0.47/0.00000e+000 | 14/43/0.16/3.16500e-006 | |
X4 | 13/40/4.53/6.04693e-008 | 6/19/0.09/0.00000e+000 | |
X5 | 7/22/3.13/1.30935e-007 | 10/31/4.67/5.34936e-006 |
Dim | Initial points | MSGP method | Algorithm 2.1 |
1000 | X1 | 7/22/0.06/1.31135e-007 | 13/40/0.05/3.38669e-006 |
X2 | 2/7/0.05/0.00000e+000 | 4/13/0.03/0.00000e+000 | |
X3 | 11/34/0.08/2.19964e-007 | 3/40/0.05/3.36081e-006 | |
X4 | 3/10/0.05/0.00000e+000 | 6/19/0.05/0.00000e+000 | |
X5 | 11/34/0.09/8.93938e-008 | 8/25/0.06/6.13420e-006 | |
3000 | X1 | 2/7/0.05/0.00000e+000 | 13/40/0.06/5.81725e-006 |
X2 | 11/34/0.25/4.90071e-006 | 4/13/0.03/0.00000e+000 | |
X3 | 3/10/0.06/0.00000e+000 | 13/40/0.08/5.80007e-006 | |
X4 | 11/34/0.30/2.69613e-006 | 6/19/0.05/0.00000e+000 | |
X5 | 7/22/0.31/1.31003e-007 | 10/31/0.42/2.65195e-006 | |
5000 | X1 | 2/7/0.05/0.00000e+000 | 13/40/0.08/7.49753e-006 |
X2 | 11/34/0.53/7.57273e-006 | 4/13/0.05/ 0.00000e+000 | |
X3 | 3/10/0.13/0.00000e+000 | 13/40/0.09/7.48340e-006 | |
X4 | 12/37/0.78/8.40744e-008 | 6/19/0.05/0.00000e+000 | |
X5 | 7/22/0.64/1.30968e-007 | 10/31/1.05/3.78182e-006 | |
10000 | X1 | 2/7/0.06/0.00000e+000 | 14/43/0.14/2.89200e-006 |
X2 | 11/34/1.77/6.56131e-006 | 4/13/0.06/0.00000e+000 | |
X3 | 3/10/0.36/0.00000e+000 | 14/43/0.16/2.88949e-006 | |
X4 | 13/40/3.00/6.90437e-008 | 6/19/0.08/0.00000e+000 | |
X5 | 7/22/2.23/1.30940e-007 | 10/31/3.20/5.11269e-006 | |
12000 | X1 | 2/7/0.06/0.00000e+000 | 14/43/0.17/3.16733e-006 |
X2 | 11/34/2.48/6.34881e-006 | 4/13/0.06/0.00000e+000 | |
X3 | 3/10/0.47/0.00000e+000 | 14/43/0.16/3.16500e-006 | |
X4 | 13/40/4.53/6.04693e-008 | 6/19/0.09/0.00000e+000 | |
X5 | 7/22/3.13/1.30935e-007 | 10/31/4.67/5.34936e-006 |
Dim | Initial points | MSGP method | Algorithm 2.1 |
1000 | X1 | 290/1164/1.28/9.81195e-006 | 33/161/0.05/9.43667e-006 |
X2 | 285/1153/1.19/8.96144e-006 | 56/294/0.06/9.59066e-006 | |
X3 | 86/381/0.17/9.29618e-006 | 37/184/0.05/8.83590e-006 | |
X4 | 61/275/0.30/9.56339e-006 | 62/330/0.06/9.97633e-006 | |
X5 | 361/1457/1.55/8.71650e-006 | 47/246/0.23/8.93449e-006 | |
3000 | X1 | 61/281/0.98/9.44368e-006 | 44/219/0.09/8.60313e-006 |
X2 | 347/1390/9.69/9.33905e-006 | 51/289/0.11/9.89992e-006 | |
X3 | 110/467/2.80/8.61958e-006 | 38/189/0.08/7.07861e-006 | |
X4 | 65/295/0.89/9.73034e-006 | 47/275/0.11/6.69019e-006 | |
X5 | 361/1457/10.36/8.71650e-006 | 47/246/1.31/8.93449e-006 | |
5000 | X1 | 73/324/3.75/9.96592e-006 | 57/291/0.19/9.69435e-006 |
X2 | 305/1224/22.45/9.99741e-006 | 61/326/0.19/9.23331e-006 | |
X3 | 99/420/6.53/9.97198e-006 | 44/220/0.14/8.90390e-006 | |
X4 | 64/285/4.08/8.54432e-006 | 54/292/0.19/9.52366e-006 | |
X5 | 361/1457/26.92/8.71650e-006 | 47/246/3.28/8.93449e-006 | |
10000 | X1 | 63/280/13.44/8.48262e-006 | 43/212/0.25/6.39422e-006 |
X2 | 367/1471/101.08/9.69111e-006 | 48/249/0.52/9.16252e-006 | |
X3 | 79/353/18.42/8.41347e-006 | 65/331/0.63/8.97609e-006 | |
X4 | 120/498/16.27/8.51405e-006 | 64/357/0.41/9.82673e-006 | |
X5 | 361/1457/101.25/8.71650e-006 | 47/246/12.08/8.93449e-006 | |
12000 | X1 | 67/301/15.72/9.73091e-006 | 43/211/0.30/6.68736e-006 |
X2 | 390/1562/154.20/8.01930e-006 | 66/467/0.52/8.76219e-006 | |
X3 | 82/362/25.55/9.73575e-006 | 56/292/0.39/9.27446e-006 | |
X4 | 134/548/49.52/9.58265e-006 | 57/311/0.44/8.42381e-006 | |
X5 | 361/1457/144.38/8.71650e-006 | 47/246/17.19/8.93449e-006 |
Dim | Initial points | MSGP method | Algorithm 2.1 |
1000 | X1 | 290/1164/1.28/9.81195e-006 | 33/161/0.05/9.43667e-006 |
X2 | 285/1153/1.19/8.96144e-006 | 56/294/0.06/9.59066e-006 | |
X3 | 86/381/0.17/9.29618e-006 | 37/184/0.05/8.83590e-006 | |
X4 | 61/275/0.30/9.56339e-006 | 62/330/0.06/9.97633e-006 | |
X5 | 361/1457/1.55/8.71650e-006 | 47/246/0.23/8.93449e-006 | |
3000 | X1 | 61/281/0.98/9.44368e-006 | 44/219/0.09/8.60313e-006 |
X2 | 347/1390/9.69/9.33905e-006 | 51/289/0.11/9.89992e-006 | |
X3 | 110/467/2.80/8.61958e-006 | 38/189/0.08/7.07861e-006 | |
X4 | 65/295/0.89/9.73034e-006 | 47/275/0.11/6.69019e-006 | |
X5 | 361/1457/10.36/8.71650e-006 | 47/246/1.31/8.93449e-006 | |
5000 | X1 | 73/324/3.75/9.96592e-006 | 57/291/0.19/9.69435e-006 |
X2 | 305/1224/22.45/9.99741e-006 | 61/326/0.19/9.23331e-006 | |
X3 | 99/420/6.53/9.97198e-006 | 44/220/0.14/8.90390e-006 | |
X4 | 64/285/4.08/8.54432e-006 | 54/292/0.19/9.52366e-006 | |
X5 | 361/1457/26.92/8.71650e-006 | 47/246/3.28/8.93449e-006 | |
10000 | X1 | 63/280/13.44/8.48262e-006 | 43/212/0.25/6.39422e-006 |
X2 | 367/1471/101.08/9.69111e-006 | 48/249/0.52/9.16252e-006 | |
X3 | 79/353/18.42/8.41347e-006 | 65/331/0.63/8.97609e-006 | |
X4 | 120/498/16.27/8.51405e-006 | 64/357/0.41/9.82673e-006 | |
X5 | 361/1457/101.25/8.71650e-006 | 47/246/12.08/8.93449e-006 | |
12000 | X1 | 67/301/15.72/9.73091e-006 | 43/211/0.30/6.68736e-006 |
X2 | 390/1562/154.20/8.01930e-006 | 66/467/0.52/8.76219e-006 | |
X3 | 82/362/25.55/9.73575e-006 | 56/292/0.39/9.27446e-006 | |
X4 | 134/548/49.52/9.58265e-006 | 57/311/0.44/8.42381e-006 | |
X5 | 361/1457/144.38/8.71650e-006 | 47/246/17.19/8.93449e-006 |
Dim | Initial points | MSGP method | Algorithm 2.1 |
1000 | X1 | 54/226/0.09/9.68368e-006 | 43/264/0.06/9.77486e-006 |
X2 | 556/4532/1.11/9.59335e-006 | 36/230/0.05/7.01507e-006 | |
X3 | 1004/9105/1.70/9.64279e-006 | 48/311/0.06/8.53004e-006 | |
X4 | 871/7511/1.70/9.98355e-006 | 51/318/0.06/8.62714e-006 | |
X5 | 58/264/0.30/9.42953e-006 | 39/257/0.16/8.20033e-006 | |
3000 | X1 | 53/213/0.16/7.47095e-006 | 53/335/0.14/7.17598e-006 |
X2 | 628/5226/4.92/9.53246e-006 | 36/226/0.09/6.14965e-006 | |
X3 | 1237/12041/7.30/9.87899e-006 | 47/303/0.13/7.53500e-006 | |
X4 | 1059/9647/13.73/9.81351e-006 | 54/386/0.16/9.61675e-006 | |
X5 | 58/264/1.73/9.42953e-006 | 39/257/1.11/8.20033e-006 | |
5000 | X1 | 51/212/0.20/8.70652e-006 | 49/311/0.19/7.89292e-006 |
X2 | 635/5353/10.84/9.92649e-006 | 39/247/0.16/6.13645e-006 | |
X3 | 1397/13868/16.84/9.98769e-006 | 77/531/0.30/7.77119e-006 | |
X4 | 1093/10060/36.78/9.97031e-006 | 84/687/0.36/5.17010e-006 | |
X5 | 58/264/4.27/9.42953e-006 | 39/257/2.75/8.20033e-006 | |
10000 | X1 | 61/243/0.45/8.97371e-006 | 56/365/0.41/8.54468e-006 |
X2 | 206/1273/16.94/9.54721e-006 | 42/275/0.30/5.75051e-006 | |
X3 | 1739/18415/57.48/9.96405e-006 | 61/418/0.45/6.13008e-006 | |
X4 | 1102/10030/135.05/9.77795e-006 | 4/125/0.69/0.00000e+000 | |
X5 | 58/264/15.72/9.42953e-006 | 39/257/10.11/8.20033e-006 | |
12000 | X1 | 65/267/0.58/9.69254e-006 | 52/337/0.45/8.80176e-006 |
X2 | 655/5624/48.14/9.97926e-006 | 42/276/0.36/8.48727e-006 | |
X3 | 1439/14609/47.84/9.95483e-006 | 58/396/0.52/9.34846e-006 | |
X4 | 1037/9446/181.69/9.44940e-006 | 4/71/103.92/0.00000e+000 | |
X5 | 58/264/22.38/9.42953e-006 | 39/257/14.28/8.20033e-006 |
Dim | Initial points | MSGP method | Algorithm 2.1 |
1000 | X1 | 54/226/0.09/9.68368e-006 | 43/264/0.06/9.77486e-006 |
X2 | 556/4532/1.11/9.59335e-006 | 36/230/0.05/7.01507e-006 | |
X3 | 1004/9105/1.70/9.64279e-006 | 48/311/0.06/8.53004e-006 | |
X4 | 871/7511/1.70/9.98355e-006 | 51/318/0.06/8.62714e-006 | |
X5 | 58/264/0.30/9.42953e-006 | 39/257/0.16/8.20033e-006 | |
3000 | X1 | 53/213/0.16/7.47095e-006 | 53/335/0.14/7.17598e-006 |
X2 | 628/5226/4.92/9.53246e-006 | 36/226/0.09/6.14965e-006 | |
X3 | 1237/12041/7.30/9.87899e-006 | 47/303/0.13/7.53500e-006 | |
X4 | 1059/9647/13.73/9.81351e-006 | 54/386/0.16/9.61675e-006 | |
X5 | 58/264/1.73/9.42953e-006 | 39/257/1.11/8.20033e-006 | |
5000 | X1 | 51/212/0.20/8.70652e-006 | 49/311/0.19/7.89292e-006 |
X2 | 635/5353/10.84/9.92649e-006 | 39/247/0.16/6.13645e-006 | |
X3 | 1397/13868/16.84/9.98769e-006 | 77/531/0.30/7.77119e-006 | |
X4 | 1093/10060/36.78/9.97031e-006 | 84/687/0.36/5.17010e-006 | |
X5 | 58/264/4.27/9.42953e-006 | 39/257/2.75/8.20033e-006 | |
10000 | X1 | 61/243/0.45/8.97371e-006 | 56/365/0.41/8.54468e-006 |
X2 | 206/1273/16.94/9.54721e-006 | 42/275/0.30/5.75051e-006 | |
X3 | 1739/18415/57.48/9.96405e-006 | 61/418/0.45/6.13008e-006 | |
X4 | 1102/10030/135.05/9.77795e-006 | 4/125/0.69/0.00000e+000 | |
X5 | 58/264/15.72/9.42953e-006 | 39/257/10.11/8.20033e-006 | |
12000 | X1 | 65/267/0.58/9.69254e-006 | 52/337/0.45/8.80176e-006 |
X2 | 655/5624/48.14/9.97926e-006 | 42/276/0.36/8.48727e-006 | |
X3 | 1439/14609/47.84/9.95483e-006 | 58/396/0.52/9.34846e-006 | |
X4 | 1037/9446/181.69/9.44940e-006 | 4/71/103.92/0.00000e+000 | |
X5 | 58/264/22.38/9.42953e-006 | 39/257/14.28/8.20033e-006 |
Dim | Initial points | MSGP method | Algorithm 2.1 |
1000 | X1 | 194/1015/0.59/9.66433e-006 | 30/184/0.05/5.70062e-006 |
X2 | 117/619/0.20/9.09560e-006 | 58/375/0.08/8.92285e-006 | |
X3 | 157/833/0.24/9.74765e-006 | 75/484/0.08/6.43351e-006 | |
X4 | 159/838/0.25/9.55038e-006 | 70/453/0.06/6.92855e-006 | |
X5 | 156/800/0.52/9.96648e-006 | 55/354/0.06/8.13127e-006 | |
3000 | X1 | 174/908/3.66/9.87344e-006 | 94/610/0.19/9.67519e-006 |
X2 | 164/839/0.89/9.10283e-006 | 43/272/0.09/4.67179e-006 | |
X3 | 168/886/0.98/9.48568e-006 | 75/486/0.16/8.24368e-006 | |
X4 | 213/1147/1.39/9.27139e-006 | 61/394/0.13/5.88525e-006 | |
X5 | 183/990/3.84/9.99259e-006 | 62/396/0.13/8.46852e-006 | |
5000 | X1 | 174/915/6.94/9.56987e-006 | 42/267/0.13/9.61170e-006 |
X2 | 163/840/1.94/9.18817e-006 | 63/404/0.19/9.53629e-006 | |
X3 | 186/1014/2.59/9.83818e-006 | 67/431/0.20/9.62859e-006 | |
X4 | 211/1127/2.70/9.61085e-006 | 62/402/0.19/6.30592e-006 | |
X5 | 170/881/9.19/9.70906e-006 | 41/261/0.14/7.03502e-006 | |
10000 | X1 | 181/969/30.69/9.49929e-006 | 29/178/0.17/9.26476e-006 |
X2 | 161/808/7.27/8.99994e-006 | 31/193/0.19/8.57493e-006 | |
X3 | 182/983/7.89/9.62444e-006 | 78/504/0.94/8.99403e-006 | |
X4 | 206/1069/8.33/9.78939e-006 | 40/250/0.23/9.71324e-006 | |
X5 | 182/972/30.75/9.75983e-006 | 68/439/0.38/8.26113e-006 | |
12000 | X1 | 190/1007/59.33/9.43919e-006 | 52/331/0.34/8.48201e-006 |
X2 | 177/920/9.55/9.60849e-006 | 68/467/0.45/6.51248e-006 | |
X3 | 180/960/11.08/9.56932e-006 | 85/549/0.55/9.43656e-006 | |
X4 | 200/1059/11.67/9.87597e-006 | 28/171/0.19/8.94950e-006 | |
X5 | 174/936/34.61/9.79661e-006 | 70/453/0.47/7.91811e-006 |
Dim | Initial points | MSGP method | Algorithm 2.1 |
1000 | X1 | 194/1015/0.59/9.66433e-006 | 30/184/0.05/5.70062e-006 |
X2 | 117/619/0.20/9.09560e-006 | 58/375/0.08/8.92285e-006 | |
X3 | 157/833/0.24/9.74765e-006 | 75/484/0.08/6.43351e-006 | |
X4 | 159/838/0.25/9.55038e-006 | 70/453/0.06/6.92855e-006 | |
X5 | 156/800/0.52/9.96648e-006 | 55/354/0.06/8.13127e-006 | |
3000 | X1 | 174/908/3.66/9.87344e-006 | 94/610/0.19/9.67519e-006 |
X2 | 164/839/0.89/9.10283e-006 | 43/272/0.09/4.67179e-006 | |
X3 | 168/886/0.98/9.48568e-006 | 75/486/0.16/8.24368e-006 | |
X4 | 213/1147/1.39/9.27139e-006 | 61/394/0.13/5.88525e-006 | |
X5 | 183/990/3.84/9.99259e-006 | 62/396/0.13/8.46852e-006 | |
5000 | X1 | 174/915/6.94/9.56987e-006 | 42/267/0.13/9.61170e-006 |
X2 | 163/840/1.94/9.18817e-006 | 63/404/0.19/9.53629e-006 | |
X3 | 186/1014/2.59/9.83818e-006 | 67/431/0.20/9.62859e-006 | |
X4 | 211/1127/2.70/9.61085e-006 | 62/402/0.19/6.30592e-006 | |
X5 | 170/881/9.19/9.70906e-006 | 41/261/0.14/7.03502e-006 | |
10000 | X1 | 181/969/30.69/9.49929e-006 | 29/178/0.17/9.26476e-006 |
X2 | 161/808/7.27/8.99994e-006 | 31/193/0.19/8.57493e-006 | |
X3 | 182/983/7.89/9.62444e-006 | 78/504/0.94/8.99403e-006 | |
X4 | 206/1069/8.33/9.78939e-006 | 40/250/0.23/9.71324e-006 | |
X5 | 182/972/30.75/9.75983e-006 | 68/439/0.38/8.26113e-006 | |
12000 | X1 | 190/1007/59.33/9.43919e-006 | 52/331/0.34/8.48201e-006 |
X2 | 177/920/9.55/9.60849e-006 | 68/467/0.45/6.51248e-006 | |
X3 | 180/960/11.08/9.56932e-006 | 85/549/0.55/9.43656e-006 | |
X4 | 200/1059/11.67/9.87597e-006 | 28/171/0.19/8.94950e-006 | |
X5 | 174/936/34.61/9.79661e-006 | 70/453/0.47/7.91811e-006 |
Dim | MSGP method | Algorithm 2.1 | |
Problem 1 | 1000 | 10/31/0.08/1.29174e-007 | 6/19/0.03/0.00000e+000 |
10/31/0.05/3.60715e-006 | 6/19/0.00/0.00000e+000 | ||
10/31/0.05/1.31904e-007 | 6/19/0.02/0.00000e+000 | ||
3000 | 11/34/0.30/4.53840e-006 | 6/19/0.03/0.00000e+000 | |
11/34/0.27/6.94297e-006 | 6/19/0.02/0.00000e+000 | ||
11/34/0.25/9.30472e-006 | 6/19/0.02/0.00000e+000 | ||
5000 | 11/34/0.72/9.94443e-006 | 6/19/0.05/0.00000e+000 | |
12/37/0.75/1.10770e-006 | 6/19/0.03/0.00000e+000 | ||
12/37/0.72/9.50443e-008 | 6/19/0.03/0.00000e+000 | ||
10000 | 13/40/3.03/8.74543e-008 | 6/19/0.08/0.00000e+000 | |
12/37/2.67/6.56124e-006 | 6/19/0.06/0.00000e+000 | ||
12/37/2.64/4.66009e-006 | 6/19/0.05/0.00000e+000 | ||
12000 | 13/40/4.13/1.19951e-007 | 6/19/0.09/0.00000e+000 | |
14/43/4.67/1.13842e-007 | 6/19/0.06/0.00000e+000 | ||
13/40/4.13/1.98039e-007 | 6/19/0.06/0.00000e+000 | ||
Problem 2 | 1000 | 105/506/0.33/9.97726e-006 | 84/487/0.09/7.86183e-006 |
104/482/0.28/9.49717e-006 | 81/465/0.06/8.31377e-006 | ||
>113/554/0.31/9.22890e-006 | 83/449/0.06/9.84927e-006 | ||
3000 | 126/650/1.88/9.29974e-006 | 91/515/0.22/9.63881e-006 | |
139/677/2.05/8.98283e-006 | 94/521/0.19/8.70734e-006 | ||
133/639/1.94/9.51118e-006 | 98/532/0.22/7.45756e-006 | ||
5000 | 143/727/5.03/8.99648e-006 | 97/565/0.39/9.72677e-006 | |
134/692/5.02/7.94479e-006 | 100/567/0.38/8.99827e-006 | ||
141/695/5.00/8.93255e-006 | 102/650/0.41/9.83925e-006 | ||
10000 | 154/834/20.17/9.55153e-006 | 93/545/0.70/7.86166e-006 | |
152/796/20.00/8.59073e-006 | 122/745/0.92/8.76303e-006 | ||
154/794/20.20/9.43874e-006 | 127/863/0.98/9.20702e-006 | ||
12000 | 162/855/30.14/9.10526e-006 | 122/748/1.17/9.67756e-006 | |
163/854/30.45/9.97329e-006 | 114/805/1.16/8.33603e-006 | ||
158/828/29.94/9.08543e-006 | 112/751/1.08/9.98871e-006 |
Dim | MSGP method | Algorithm 2.1 | |
Problem 1 | 1000 | 10/31/0.08/1.29174e-007 | 6/19/0.03/0.00000e+000 |
10/31/0.05/3.60715e-006 | 6/19/0.00/0.00000e+000 | ||
10/31/0.05/1.31904e-007 | 6/19/0.02/0.00000e+000 | ||
3000 | 11/34/0.30/4.53840e-006 | 6/19/0.03/0.00000e+000 | |
11/34/0.27/6.94297e-006 | 6/19/0.02/0.00000e+000 | ||
11/34/0.25/9.30472e-006 | 6/19/0.02/0.00000e+000 | ||
5000 | 11/34/0.72/9.94443e-006 | 6/19/0.05/0.00000e+000 | |
12/37/0.75/1.10770e-006 | 6/19/0.03/0.00000e+000 | ||
12/37/0.72/9.50443e-008 | 6/19/0.03/0.00000e+000 | ||
10000 | 13/40/3.03/8.74543e-008 | 6/19/0.08/0.00000e+000 | |
12/37/2.67/6.56124e-006 | 6/19/0.06/0.00000e+000 | ||
12/37/2.64/4.66009e-006 | 6/19/0.05/0.00000e+000 | ||
12000 | 13/40/4.13/1.19951e-007 | 6/19/0.09/0.00000e+000 | |
14/43/4.67/1.13842e-007 | 6/19/0.06/0.00000e+000 | ||
13/40/4.13/1.98039e-007 | 6/19/0.06/0.00000e+000 | ||
Problem 2 | 1000 | 105/506/0.33/9.97726e-006 | 84/487/0.09/7.86183e-006 |
104/482/0.28/9.49717e-006 | 81/465/0.06/8.31377e-006 | ||
>113/554/0.31/9.22890e-006 | 83/449/0.06/9.84927e-006 | ||
3000 | 126/650/1.88/9.29974e-006 | 91/515/0.22/9.63881e-006 | |
139/677/2.05/8.98283e-006 | 94/521/0.19/8.70734e-006 | ||
133/639/1.94/9.51118e-006 | 98/532/0.22/7.45756e-006 | ||
5000 | 143/727/5.03/8.99648e-006 | 97/565/0.39/9.72677e-006 | |
134/692/5.02/7.94479e-006 | 100/567/0.38/8.99827e-006 | ||
141/695/5.00/8.93255e-006 | 102/650/0.41/9.83925e-006 | ||
10000 | 154/834/20.17/9.55153e-006 | 93/545/0.70/7.86166e-006 | |
152/796/20.00/8.59073e-006 | 122/745/0.92/8.76303e-006 | ||
154/794/20.20/9.43874e-006 | 127/863/0.98/9.20702e-006 | ||
12000 | 162/855/30.14/9.10526e-006 | 122/748/1.17/9.67756e-006 | |
163/854/30.45/9.97329e-006 | 114/805/1.16/8.33603e-006 | ||
158/828/29.94/9.08543e-006 | 112/751/1.08/9.98871e-006 |
Dim | MSGP method | Algorithm 2.1 | |
Problem 3 | 1000 | 248/1765/0.52/8.14403e-006 | 66/443/0.09/5.73224e-006 |
233/1659/0.44/8.60251e-006 | 73/505/0.08/8.37567e-006 | ||
265/1839/0.53/8.07376e-006 | 61/410/0.06/6.30228e-006 | ||
3000 | 291/2170/2.63/6.57364e-006 | 77/535/0.23/9.31672e-006 | |
284/2163/2.41/9.63384e-006 | 88/612/0.23/9.82561e-006 | ||
287/2196/2.55/9.97633e-006 | 85/583/0.23/7.58095e-006 | ||
5000 | 293/2317/6.02/9.41072e-006 | 106/758/0.58/8.60162e-006 | |
300/2320/6.19/9.59322e-006 | 89/635/0.44/8.10417e-006 | ||
286/2259/5.86/7.50859e-006 | 108/784/0.56/6.29653e-006 | ||
10000 | 262/2147/17.13/9.37057e-006 | 181/1544/2.89/7.61750e-006 | |
296/2454/18.55/8.82342e-006 | 94/645/1.03/9.49197e-006 | ||
277/2187/18.78/8.03849e-006 | 65/435/0.72/5.90105e-006 | ||
12000 | 378/3238/32.92/6.12712e-006 | 82/601/1.02/9.99908e-006 | |
301/2446/28.58/9.40122e-006 | 139/1096/2.63/6.13477e-006 | ||
300/2497/26.70/9.76692e-006 | 148/1137/2.44/8.01365e-006 | ||
Problem 4 | 1000 | 255/1646/0.55/9.88522e-006 | 148/969/0.14/8.52252e-006 |
315/2190/0.64/8.58459e-006 | 167/1132/0.14/7.14294e-006 | ||
263/1779/0.51/9.78341e-006 | 152/998/0.11/6.83836e-006 | ||
3000 | 266/1864/2.59/9.68351e-006 | 204/1466/0.52/8.15543e-006 | |
269/1792/2.56/9.50426e-006 | 176/1151/0.33/7.26404e-006 | ||
303/2094/2.95/7.70559e-006 | 180/1257/0.42/7.24683e-006 | ||
5000 | 322/2299/7.41/6.83957e-006 | 208/1469/0.91/5.80054e-006 | |
265/1790/5.94/9.84065e-006 | 181/1202/0.64/9.43111e-006 | ||
260/2023/5.14/9.80395e-006 | 195/1315/0.77/6.31066e-006 | ||
10000 | 271/2024/20.59/8.91775e-006 | 217/1519/2.16/6.92039e-006 | |
283/1997/21.91/9.98757e-006 | 216/1535/2.09/9.27616e-006 | ||
272/2002/19.44/8.12148e-006 | 198/1299/1.64/7.45635e-006 | ||
12000 | 218/1786/13.67/5.52117e-006 | 235/1728/3.33/7.46955e-006 | |
309/2230/32.14/9.85930e-006 | 231/1779/3.78/8.69710e-006 | ||
248/1926/24.22/8.80377e-006 | 209/1463/2.95/8.14360e-006 |
Dim | MSGP method | Algorithm 2.1 | |
Problem 3 | 1000 | 248/1765/0.52/8.14403e-006 | 66/443/0.09/5.73224e-006 |
233/1659/0.44/8.60251e-006 | 73/505/0.08/8.37567e-006 | ||
265/1839/0.53/8.07376e-006 | 61/410/0.06/6.30228e-006 | ||
3000 | 291/2170/2.63/6.57364e-006 | 77/535/0.23/9.31672e-006 | |
284/2163/2.41/9.63384e-006 | 88/612/0.23/9.82561e-006 | ||
287/2196/2.55/9.97633e-006 | 85/583/0.23/7.58095e-006 | ||
5000 | 293/2317/6.02/9.41072e-006 | 106/758/0.58/8.60162e-006 | |
300/2320/6.19/9.59322e-006 | 89/635/0.44/8.10417e-006 | ||
286/2259/5.86/7.50859e-006 | 108/784/0.56/6.29653e-006 | ||
10000 | 262/2147/17.13/9.37057e-006 | 181/1544/2.89/7.61750e-006 | |
296/2454/18.55/8.82342e-006 | 94/645/1.03/9.49197e-006 | ||
277/2187/18.78/8.03849e-006 | 65/435/0.72/5.90105e-006 | ||
12000 | 378/3238/32.92/6.12712e-006 | 82/601/1.02/9.99908e-006 | |
301/2446/28.58/9.40122e-006 | 139/1096/2.63/6.13477e-006 | ||
300/2497/26.70/9.76692e-006 | 148/1137/2.44/8.01365e-006 | ||
Problem 4 | 1000 | 255/1646/0.55/9.88522e-006 | 148/969/0.14/8.52252e-006 |
315/2190/0.64/8.58459e-006 | 167/1132/0.14/7.14294e-006 | ||
263/1779/0.51/9.78341e-006 | 152/998/0.11/6.83836e-006 | ||
3000 | 266/1864/2.59/9.68351e-006 | 204/1466/0.52/8.15543e-006 | |
269/1792/2.56/9.50426e-006 | 176/1151/0.33/7.26404e-006 | ||
303/2094/2.95/7.70559e-006 | 180/1257/0.42/7.24683e-006 | ||
5000 | 322/2299/7.41/6.83957e-006 | 208/1469/0.91/5.80054e-006 | |
265/1790/5.94/9.84065e-006 | 181/1202/0.64/9.43111e-006 | ||
260/2023/5.14/9.80395e-006 | 195/1315/0.77/6.31066e-006 | ||
10000 | 271/2024/20.59/8.91775e-006 | 217/1519/2.16/6.92039e-006 | |
283/1997/21.91/9.98757e-006 | 216/1535/2.09/9.27616e-006 | ||
272/2002/19.44/8.12148e-006 | 198/1299/1.64/7.45635e-006 | ||
12000 | 218/1786/13.67/5.52117e-006 | 235/1728/3.33/7.46955e-006 | |
309/2230/32.14/9.85930e-006 | 231/1779/3.78/8.69710e-006 | ||
248/1926/24.22/8.80377e-006 | 209/1463/2.95/8.14360e-006 |
[1] |
Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149 |
[2] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[3] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[4] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[5] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[6] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[7] |
Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012 |
[8] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[9] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[10] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[11] |
Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065 |
[12] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[13] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[14] |
Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002 |
[15] |
Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263 |
[16] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[17] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[18] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[19] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[20] |
Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]