• Previous Article
    Ordering policy for non-instantaneously deteriorating products under price adjustment and trade credits
  • JIMO Home
  • This Issue
  • Next Article
    Service product pricing strategies based on time-sensitive customer choice behavior
January  2017, 13(1): 313-327. doi: 10.3934/jimo.2016019

Higher-order sensitivity analysis in set-valued optimization under Henig efficiency

Department of Mathematics, Nanchang University, Nanchang, 330031, China

Yihong Xu, Professor, major field of interest is in the area of set-valued optimization. E-mail: xuyihong@ncu.edu.cn

Zhenhua Peng, E-mail: pzhjearya@gmail.com

Received  April 2015 Revised  December 2015 Published  March 2016

Fund Project: the National Natural Science Foundation of China Grant 11461044, the Natural Science Foundation of Jiangxi Province (20151BAB201027) and the Science and Technology Foundation of the Education Department of Jiangxi Province(GJJ12010).

The behavior of the perturbation map is analyzed quantitatively by using the concept of higher-order contingent derivative for the set-valued maps under Henig efficiency. By using the higher-order contingent derivatives and applying a separation theorem for convex sets, some results concerning higher-order sensitivity analysis are established.

Citation: Yihong Xu, Zhenhua Peng. Higher-order sensitivity analysis in set-valued optimization under Henig efficiency. Journal of Industrial and Management Optimization, 2017, 13 (1) : 313-327. doi: 10.3934/jimo.2016019
References:
[1] J.P. Aubin and H. Frankowska, Set-valued Analysis, Birkhäuser, Boston, 1990. 
[2]

H.P. Benson, An improved denition of proper efficiency for vector maximization with respect to cones, Journal of Mathematical Analysis and Applications, 71 (1979), 232-241. 

[3]

J.M. Borwein and D. Zhuang, Super efficiency in vector optimization, Transactions of the American Mathematical Society, 338 (1993), 105-122. 

[4]

H.Y. Deng and W. Wei, Existence and stability analysis for nonlinear optimal control problems with 1-mean equicontinuous controls, Journal of Industrial and Management Optimization, 11 (2015), 1409-1422. 

[5] A.V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Academic Press. New York, 1983. 
[6]

M.I. Henig, Proper efficiency with respect to cones, Journal of Optimization Theory and Applications, 36 (1982), 387-407. 

[7]

Y.D. Hu and C. Ling, Connectedness of cone superefficient point sets in locally convex topo-logical vector spaces, Journal of Optimization Theory and Applications, 107 (2000), 433-446. 

[8] J. Jahn, Vector Optimization: Theory, Springer Berlin Heidel-berg, 2004. 
[9]

S.J. Li, Sensitivity and stability for contingent derivative in multiobjective optimization, Mathematica Applicata, 11 (1998), 49-53. 

[10]

S. J. Li and C. R. Chen, Higher order optimality conditions for henig efficient solutions in set-valued optimization, Journal of Mathematical Analysis and Applications, 323 (2006), 1184-1200. 

[11]

Z. F. Li and S. Y. Wang, Connectedness of super efficient sets in vector optimization of set-valued maps, Mathematical Methods of Operations Research, 48 (1998), 207-217. 

[12]

S. J. LiX. K. Sun and J. Zhai, Second-order contingent derivatives of set-valued mappings with application to set-valued optimization, Applied Mathematics and Computation, 218 (2012), 6874-6886. 

[13]

X. B. LiX. J. Long and Z. Lin, Stability of solution mapping for parametric symmetric vector equilibrium problems, Journal of Industrial and Management Optimization, 11 (2015), 661-671. 

[14]

Q. S. Qiu and X. M. Yang, Connectedness of Henig weakly efficient solution set for set-valued optimization problems, Journal of Optimization Theory and Applications, 152 (2012), 439-449. 

[15]

R. T. Rockafellar, Lagrange multipliers and subderivatives of optimal value functions in non-linear programming, Mathematical Programming Study, 17 (1982), 28-66. 

[16]

B. H. Sheng and S. Y. Liu, Sensitivity analysis in vector optimization under Benson proper efficiency, Journal of Mathematical Research & Exposition, 22 (2002), 407-412. 

[17]

D. S. Shi, Contingent derivative of the perturbation in multiobjective optimization, Journal of Optimization Theory and Applications, 70 (1991), 351-362. 

[18]

D. S. Shi, Sensitivity analysis in convex vector optimization, Journal of Optimization Theory and Applications, 77 (1993), 145-159. 

[19]

T. Tanino, Sensitivity analysis in multiobjective optimization, Journal of Optimization Theory and Applications, 56 (1988), 479-499. 

[20]

T. Tanino, Stability and sensitivity analysis in convex vector optimization, SIAM Journal on Control and Optimization, 26 (1988), 521-536. 

[21]

Q. L. Wang and S. J. Li, Generalized higher-order optimality conditions for set-valued opti-mization under Henig efficiency, Numerical Functional Analysis and Optimization, 30 (2009), 849-869. 

[22]

D. E. Ward, A chain rule for first and second order epiderivatives and hypoderivatives, Journal of Mathematical Analysis and Applications, 348 (2008), 324-336. 

[23]

X. Y. Zheng, Proper efficiency in locally convex topological vector spaces, Journal of Opti-mization Theory and Applications, 94 (1997), 469-486. 

show all references

References:
[1] J.P. Aubin and H. Frankowska, Set-valued Analysis, Birkhäuser, Boston, 1990. 
[2]

H.P. Benson, An improved denition of proper efficiency for vector maximization with respect to cones, Journal of Mathematical Analysis and Applications, 71 (1979), 232-241. 

[3]

J.M. Borwein and D. Zhuang, Super efficiency in vector optimization, Transactions of the American Mathematical Society, 338 (1993), 105-122. 

[4]

H.Y. Deng and W. Wei, Existence and stability analysis for nonlinear optimal control problems with 1-mean equicontinuous controls, Journal of Industrial and Management Optimization, 11 (2015), 1409-1422. 

[5] A.V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Academic Press. New York, 1983. 
[6]

M.I. Henig, Proper efficiency with respect to cones, Journal of Optimization Theory and Applications, 36 (1982), 387-407. 

[7]

Y.D. Hu and C. Ling, Connectedness of cone superefficient point sets in locally convex topo-logical vector spaces, Journal of Optimization Theory and Applications, 107 (2000), 433-446. 

[8] J. Jahn, Vector Optimization: Theory, Springer Berlin Heidel-berg, 2004. 
[9]

S.J. Li, Sensitivity and stability for contingent derivative in multiobjective optimization, Mathematica Applicata, 11 (1998), 49-53. 

[10]

S. J. Li and C. R. Chen, Higher order optimality conditions for henig efficient solutions in set-valued optimization, Journal of Mathematical Analysis and Applications, 323 (2006), 1184-1200. 

[11]

Z. F. Li and S. Y. Wang, Connectedness of super efficient sets in vector optimization of set-valued maps, Mathematical Methods of Operations Research, 48 (1998), 207-217. 

[12]

S. J. LiX. K. Sun and J. Zhai, Second-order contingent derivatives of set-valued mappings with application to set-valued optimization, Applied Mathematics and Computation, 218 (2012), 6874-6886. 

[13]

X. B. LiX. J. Long and Z. Lin, Stability of solution mapping for parametric symmetric vector equilibrium problems, Journal of Industrial and Management Optimization, 11 (2015), 661-671. 

[14]

Q. S. Qiu and X. M. Yang, Connectedness of Henig weakly efficient solution set for set-valued optimization problems, Journal of Optimization Theory and Applications, 152 (2012), 439-449. 

[15]

R. T. Rockafellar, Lagrange multipliers and subderivatives of optimal value functions in non-linear programming, Mathematical Programming Study, 17 (1982), 28-66. 

[16]

B. H. Sheng and S. Y. Liu, Sensitivity analysis in vector optimization under Benson proper efficiency, Journal of Mathematical Research & Exposition, 22 (2002), 407-412. 

[17]

D. S. Shi, Contingent derivative of the perturbation in multiobjective optimization, Journal of Optimization Theory and Applications, 70 (1991), 351-362. 

[18]

D. S. Shi, Sensitivity analysis in convex vector optimization, Journal of Optimization Theory and Applications, 77 (1993), 145-159. 

[19]

T. Tanino, Sensitivity analysis in multiobjective optimization, Journal of Optimization Theory and Applications, 56 (1988), 479-499. 

[20]

T. Tanino, Stability and sensitivity analysis in convex vector optimization, SIAM Journal on Control and Optimization, 26 (1988), 521-536. 

[21]

Q. L. Wang and S. J. Li, Generalized higher-order optimality conditions for set-valued opti-mization under Henig efficiency, Numerical Functional Analysis and Optimization, 30 (2009), 849-869. 

[22]

D. E. Ward, A chain rule for first and second order epiderivatives and hypoderivatives, Journal of Mathematical Analysis and Applications, 348 (2008), 324-336. 

[23]

X. Y. Zheng, Proper efficiency in locally convex topological vector spaces, Journal of Opti-mization Theory and Applications, 94 (1997), 469-486. 

[1]

Qilin Wang, S. J. Li. Higher-order sensitivity analysis in nonconvex vector optimization. Journal of Industrial and Management Optimization, 2010, 6 (2) : 381-392. doi: 10.3934/jimo.2010.6.381

[2]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1447-1478. doi: 10.3934/cpaa.2021028

[3]

Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81

[4]

Ruotian Gao, Wenxun Xing. Robust sensitivity analysis for linear programming with ellipsoidal perturbation. Journal of Industrial and Management Optimization, 2020, 16 (4) : 2029-2044. doi: 10.3934/jimo.2019041

[5]

Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations and Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022

[6]

Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183

[7]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990

[8]

Xinmin Yang, Xiaoqi Yang, Kok Lay Teo. Higher-order symmetric duality in multiobjective programming with invexity. Journal of Industrial and Management Optimization, 2008, 4 (2) : 385-391. doi: 10.3934/jimo.2008.4.385

[9]

Pedro D. Prieto-Martínez, Narciso Román-Roy. Higher-order mechanics: Variational principles and other topics. Journal of Geometric Mechanics, 2013, 5 (4) : 493-510. doi: 10.3934/jgm.2013.5.493

[10]

George J. Bautista, Ademir F. Pazoto. Decay of solutions for a dissipative higher-order Boussinesq system on a periodic domain. Communications on Pure and Applied Analysis, 2020, 19 (2) : 747-769. doi: 10.3934/cpaa.2020035

[11]

Feliz Minhós, Hugo Carrasco. Solvability of higher-order BVPs in the half-line with unbounded nonlinearities. Conference Publications, 2015, 2015 (special) : 841-850. doi: 10.3934/proc.2015.0841

[12]

Clesh Deseskel Elion Ekohela, Daniel Moukoko. On higher-order anisotropic perturbed Caginalp phase field systems. Electronic Research Announcements, 2019, 26: 36-53. doi: 10.3934/era.2019.26.004

[13]

Robert Jankowski, Barbara Łupińska, Magdalena Nockowska-Rosiak, Ewa Schmeidel. Monotonic solutions of a higher-order neutral difference system. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 253-261. doi: 10.3934/dcdsb.2018017

[14]

Anthony Bloch, Leonardo Colombo, Fernando Jiménez. The variational discretization of the constrained higher-order Lagrange-Poincaré equations. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 309-344. doi: 10.3934/dcds.2019013

[15]

Feng Wang, Fengquan Li, Zhijun Qiao. On the Cauchy problem for a higher-order μ-Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4163-4187. doi: 10.3934/dcds.2018181

[16]

Daomin Cao, Guolin Qin. Liouville type theorems for fractional and higher-order fractional systems. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2269-2283. doi: 10.3934/dcds.2020361

[17]

Liping Tang, Xinmin Yang, Ying Gao. Higher-order symmetric duality for multiobjective programming with cone constraints. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1873-1884. doi: 10.3934/jimo.2019033

[18]

Aliang Xia, Jianfu Yang. Normalized solutions of higher-order Schrödinger equations. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 447-462. doi: 10.3934/dcds.2019018

[19]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

[20]

Min Zhu. On the higher-order b-family equation and Euler equations on the circle. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 3013-3024. doi: 10.3934/dcds.2014.34.3013

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (218)
  • HTML views (357)
  • Cited by (4)

Other articles
by authors

[Back to Top]