• Previous Article
    Multiple-stage multiple-machine capacitated lot-sizing and scheduling with sequence-dependent setup: A case study in the wheel industry
  • JIMO Home
  • This Issue
  • Next Article
    Markowitz's mean-variance optimization with investment and constrained reinsurance
January  2017, 13(1): 399-411. doi: 10.3934/jimo.2016023

Optimal stopping problems with restricted stopping times

1. 

Department of Statistics and Actuarial Science, East China Normal University, Shanghai, China

2. 

Department of Mathematics, Zhejiang Normal University, China

3. 

Department of Applied Finance and Actuarial Studies, Macquarie University, Sydney, Australia

* Corresponding author: Prof. Xianyi Wu, E-mail: xywu@stat.ecnu.edu.cn

Received  May 2015 Published  March 2016

Fund Project: This research was partially supported by the Natural Science Foundation of China under Grant No. 71371074, 111 Project Grant No. B14019 and the Australian Research Council Discovery Project Grant No. DP1094153.

This paper provides a general ground for the problems of optimal stopping times over the families of partially available (or restricted) stopping times. It subsumes the classical framework in continuous-time, discrete-time, as well as semi-Markov settings as special cases. We model the problem by a restricted pool of stopping times meeting certain natural conditions and present its solution by means of Snell's envelope technique that extends the classical results. We further extend this type of problems to the stochastic processes indexed by partially ordered set.

Citation: Wenqing Bao, Xianyi Wu, Xian Zhou. Optimal stopping problems with restricted stopping times. Journal of Industrial and Management Optimization, 2017, 13 (1) : 399-411. doi: 10.3934/jimo.2016023
References:
[1]

J. A. Bather and H. Chernoff, Sequential decisions in the control of a spaceship, Proceeding of Fifth Berkeley Symposium on Mathematical Statistics and Probability, 3 (1966), 181-207. 

[2]

A. Bensoussan, On the theory of option pricing, Acta Applicandae Mathematicae, 2 (1984), 139-158. 

[3]

J.-M. Bismut and B. Skalli, Temps d'arr$\hat{e}$t th$\hat{e}$orie g$\hat{e}$n$\hat{e}$rale de processus et processus de Markov, Z. Wasrscheinlichkeitstheorie Verw. Gebiete, 39 (1977), 301-313.  doi: 10.1007/BF01877497.

[4]

M. J. Brennan and E. S. Schwartz, Evaluating natural rescource investments, Journal of Business, 58 (1985), 135-157. 

[5]

M. Broadie and P. Glasserman, Pricing American-style securities using simulation, Journal of Economic Dynamics and Control, 21 (1997), 1323-1352.  doi: 10.1016/S0165-1889(97)00029-8.

[6]

X. CaiX. Wu and X. Zhou, Dynamically optimal policies for stochastic scheduling subject 84 to breakdown-repeat breakdowns, IEEE Transactions on Automation Science and Engineering, 85 (2005), 158-172. 

[7]

X. CaiX. Wu and X. Zhou, Stochastic scheduling subject to preemptive-repeat breakdowns with incomplete information, Operations Research, 57 (2009), 1236-1249.  doi: 10.1287/opre.1080.0660.

[8]

Y. S. Chow, H. Robbins and D. Siegmund, Great Expectations, The Theory of Optimal Stopping Houghton Mifflin, Boston, 1971.

[9]

P. Dupuis and H. Wang, Optimal stopping with random intervention times, Advances in Applied Probability, 34 (2002), 141-157.  doi: 10.1239/aap/1019160954.

[10]

E. B. Dynkin, Optimal choice of a stopping time for a Markov process, Dokl. Akad. Nauk USSR, 150 (1963), 238-240. 

[11]

A. G. Fakeev, Optimal stopping of a Markov process, Theory of Probability and Its Applications, 15 (1970), 324-331.  doi: 10.1137/1116076.

[12]

A. G. Fakeev, Optimal stopping rules for processes with continuous parameter, Theory of Probability and Its Applications, 16 (1971), 694-696.  doi: 10.1137/1115039.

[13]

A. G. Fakeev, On optimal stopping rules for stochastic processes with continuous parameter, Theory of Probability and Its Applications, 18 (1973), 304-311.  doi: 10.1137/1115039.

[14]

J. Gittins, K. Glazebrook and R. Weber, Multi-Armed Bandit Allocation Indices, 2nd edition, John Wiley & Sons, Ltd., 2011.

[15]

H. Kaspi and A. Mandelbaum, Multi-armed bandits in discrete and continuous time, Annals of Applied Probability, 8 (1998), 1270-1290.  doi: 10.1214/aoap/1028903380.

[16]

I. Karatzas and S. E. Shreve, Methods of Mathematical Finance, Springer-Verlag, New York, 1998. doi: 10.1007/b98840.

[17]

N. E. Karoui, Les aspects probabilities du contrôle stochastique, Lecture Notes in Mathematics, 876, Springer-Verlag, Berlin, 1981, 73-238.

[18]

N. E. Karoui and I. Karatzas, Dynamic allocation problems in continuous time, Annals of Applied Probability, 4 (1994), 255-286.  doi: 10.1214/aoap/1177005062.

[19]

U. Krengel and L. Sucheston, Stopping rules and tactics for processes indexed by a directed set, Journal of Multivariate Analysis, 11 (1981), 199-229.  doi: 10.1016/0047-259X(81)90109-3.

[20]

G. F. Lawler and R. J. Vanderbei, Markov strategies for optimal control problems indexed by a partially ordered set, The Annals of Probability, 11 (1983), 642-647.  doi: 10.1214/aop/1176993508.

[21]

A. Mandelbaum and R. J. Vanderbei, Optimal stopping and supermartingales over partially ordered sets, Probability Theory and Related Fields, 57 (1981), 253-264.  doi: 10.1007/BF00535493.

[22]

M. P. McKean, A free boundary problem for the heat equation arising from a problem in Mathematical Economics, Industrial Management Review, 6 (1965), 32-39. 

[23]

J. F. Mertens, Processus stochastiques g$\acute{e} $n$\acute{e}$raux et surmartingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 22 (1972), 45-48.  doi: 10.1007/BF00538905.

[24]

J. Neveu, Discrete-Parameter Martingales, English translation, North-Holland, Amsterdam and American Elsevier, New York, 1975.

[25]

D. Nualart, Randomized stopping points and optimal stopping on the plane, The Annals of Probability, 20 (1992), 883-900.  doi: 10.1214/aop/1176989810.

[26]

B. Oksendal and A. Sulem, Optimal consumption and portfolio with both fixed and proportional transaction costs, SIAM Journal on Control and Optimization, 40 (2002), 1765-1790.  doi: 10.1137/S0363012900376013.

[27]

G. Peskir and A. N. Shiryaev, Optimal Stopping and Free-Boundary Problems, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2006.

[28]

H. Pham and P. Tankov, A coupled system of integrodifferential equations arising in liquidity risk model, Applied Mathematics and Optimization, 59 (2009), 147-173.  doi: 10.1007/s00245-008-9046-9.

[29]

C. Rogers and O. Zane, A simple model of liquidity effects, in Advances in Finance and Stochastics, Essays in Honour of Dieter Sondermann (eds. K. Sandmann and P. Schoenbucher), Springer, Berlin, 2002, 161-176.

[30]

A. N. Shiryaev, Statistical Sequential Analysis, (in Russian) Nauka, Moscow, 1976.

[31]

A. N. Shiryaev, Optimal Stopping Rules, Springer-Verlag, New York, 1978.

[32]

I. L. Snell, Applications of martingale system theory, Transactions of the American Mathematical Society, 73 (1953), 293-312. 

[33]

M. E. Thompson, Continuous parameter optimal stopping problems, Z. Wahrsheinlichkeitstheorie und Verw. Gebiete, 19 (1971), 302-318.  doi: 10.1007/BF00535835.

[34]

A. Wald, Sequential Analysis, Wiley, New York, 1947.

[35]

J. B. Walsh, Optional increasing paths, in Processus Aléatoire a Deux Indices, Lecture Notes in Mathematics, 863, Springer, Berlin, 1981, 172-201.

show all references

References:
[1]

J. A. Bather and H. Chernoff, Sequential decisions in the control of a spaceship, Proceeding of Fifth Berkeley Symposium on Mathematical Statistics and Probability, 3 (1966), 181-207. 

[2]

A. Bensoussan, On the theory of option pricing, Acta Applicandae Mathematicae, 2 (1984), 139-158. 

[3]

J.-M. Bismut and B. Skalli, Temps d'arr$\hat{e}$t th$\hat{e}$orie g$\hat{e}$n$\hat{e}$rale de processus et processus de Markov, Z. Wasrscheinlichkeitstheorie Verw. Gebiete, 39 (1977), 301-313.  doi: 10.1007/BF01877497.

[4]

M. J. Brennan and E. S. Schwartz, Evaluating natural rescource investments, Journal of Business, 58 (1985), 135-157. 

[5]

M. Broadie and P. Glasserman, Pricing American-style securities using simulation, Journal of Economic Dynamics and Control, 21 (1997), 1323-1352.  doi: 10.1016/S0165-1889(97)00029-8.

[6]

X. CaiX. Wu and X. Zhou, Dynamically optimal policies for stochastic scheduling subject 84 to breakdown-repeat breakdowns, IEEE Transactions on Automation Science and Engineering, 85 (2005), 158-172. 

[7]

X. CaiX. Wu and X. Zhou, Stochastic scheduling subject to preemptive-repeat breakdowns with incomplete information, Operations Research, 57 (2009), 1236-1249.  doi: 10.1287/opre.1080.0660.

[8]

Y. S. Chow, H. Robbins and D. Siegmund, Great Expectations, The Theory of Optimal Stopping Houghton Mifflin, Boston, 1971.

[9]

P. Dupuis and H. Wang, Optimal stopping with random intervention times, Advances in Applied Probability, 34 (2002), 141-157.  doi: 10.1239/aap/1019160954.

[10]

E. B. Dynkin, Optimal choice of a stopping time for a Markov process, Dokl. Akad. Nauk USSR, 150 (1963), 238-240. 

[11]

A. G. Fakeev, Optimal stopping of a Markov process, Theory of Probability and Its Applications, 15 (1970), 324-331.  doi: 10.1137/1116076.

[12]

A. G. Fakeev, Optimal stopping rules for processes with continuous parameter, Theory of Probability and Its Applications, 16 (1971), 694-696.  doi: 10.1137/1115039.

[13]

A. G. Fakeev, On optimal stopping rules for stochastic processes with continuous parameter, Theory of Probability and Its Applications, 18 (1973), 304-311.  doi: 10.1137/1115039.

[14]

J. Gittins, K. Glazebrook and R. Weber, Multi-Armed Bandit Allocation Indices, 2nd edition, John Wiley & Sons, Ltd., 2011.

[15]

H. Kaspi and A. Mandelbaum, Multi-armed bandits in discrete and continuous time, Annals of Applied Probability, 8 (1998), 1270-1290.  doi: 10.1214/aoap/1028903380.

[16]

I. Karatzas and S. E. Shreve, Methods of Mathematical Finance, Springer-Verlag, New York, 1998. doi: 10.1007/b98840.

[17]

N. E. Karoui, Les aspects probabilities du contrôle stochastique, Lecture Notes in Mathematics, 876, Springer-Verlag, Berlin, 1981, 73-238.

[18]

N. E. Karoui and I. Karatzas, Dynamic allocation problems in continuous time, Annals of Applied Probability, 4 (1994), 255-286.  doi: 10.1214/aoap/1177005062.

[19]

U. Krengel and L. Sucheston, Stopping rules and tactics for processes indexed by a directed set, Journal of Multivariate Analysis, 11 (1981), 199-229.  doi: 10.1016/0047-259X(81)90109-3.

[20]

G. F. Lawler and R. J. Vanderbei, Markov strategies for optimal control problems indexed by a partially ordered set, The Annals of Probability, 11 (1983), 642-647.  doi: 10.1214/aop/1176993508.

[21]

A. Mandelbaum and R. J. Vanderbei, Optimal stopping and supermartingales over partially ordered sets, Probability Theory and Related Fields, 57 (1981), 253-264.  doi: 10.1007/BF00535493.

[22]

M. P. McKean, A free boundary problem for the heat equation arising from a problem in Mathematical Economics, Industrial Management Review, 6 (1965), 32-39. 

[23]

J. F. Mertens, Processus stochastiques g$\acute{e} $n$\acute{e}$raux et surmartingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 22 (1972), 45-48.  doi: 10.1007/BF00538905.

[24]

J. Neveu, Discrete-Parameter Martingales, English translation, North-Holland, Amsterdam and American Elsevier, New York, 1975.

[25]

D. Nualart, Randomized stopping points and optimal stopping on the plane, The Annals of Probability, 20 (1992), 883-900.  doi: 10.1214/aop/1176989810.

[26]

B. Oksendal and A. Sulem, Optimal consumption and portfolio with both fixed and proportional transaction costs, SIAM Journal on Control and Optimization, 40 (2002), 1765-1790.  doi: 10.1137/S0363012900376013.

[27]

G. Peskir and A. N. Shiryaev, Optimal Stopping and Free-Boundary Problems, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2006.

[28]

H. Pham and P. Tankov, A coupled system of integrodifferential equations arising in liquidity risk model, Applied Mathematics and Optimization, 59 (2009), 147-173.  doi: 10.1007/s00245-008-9046-9.

[29]

C. Rogers and O. Zane, A simple model of liquidity effects, in Advances in Finance and Stochastics, Essays in Honour of Dieter Sondermann (eds. K. Sandmann and P. Schoenbucher), Springer, Berlin, 2002, 161-176.

[30]

A. N. Shiryaev, Statistical Sequential Analysis, (in Russian) Nauka, Moscow, 1976.

[31]

A. N. Shiryaev, Optimal Stopping Rules, Springer-Verlag, New York, 1978.

[32]

I. L. Snell, Applications of martingale system theory, Transactions of the American Mathematical Society, 73 (1953), 293-312. 

[33]

M. E. Thompson, Continuous parameter optimal stopping problems, Z. Wahrsheinlichkeitstheorie und Verw. Gebiete, 19 (1971), 302-318.  doi: 10.1007/BF00535835.

[34]

A. Wald, Sequential Analysis, Wiley, New York, 1947.

[35]

J. B. Walsh, Optional increasing paths, in Processus Aléatoire a Deux Indices, Lecture Notes in Mathematics, 863, Springer, Berlin, 1981, 172-201.

[1]

Adel Settati, Aadil Lahrouz, Mustapha El Jarroudi, Mohamed El Fatini, Kai Wang. On the threshold dynamics of the stochastic SIRS epidemic model using adequate stopping times. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1985-1997. doi: 10.3934/dcdsb.2020012

[2]

Mingshang Hu, Shige Peng. Extended conditional G-expectations and related stopping times. Probability, Uncertainty and Quantitative Risk, 2021, 6 (4) : 369-390. doi: 10.3934/puqr.2021018

[3]

Anna Maria Cherubini, Giorgio Metafune, Francesco Paparella. On the stopping time of a bouncing ball. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 43-72. doi: 10.3934/dcdsb.2008.10.43

[4]

Jakob Kotas. Optimal stopping for response-guided dosing. Networks and Heterogeneous Media, 2019, 14 (1) : 43-52. doi: 10.3934/nhm.2019003

[5]

Cong Qin, Xinfu Chen. A new weak solution to an optimal stopping problem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4823-4837. doi: 10.3934/dcdsb.2020128

[6]

Xiaoshan Chen, Xun Li, Fahuai Yi. Optimal stopping investment with non-smooth utility over an infinite time horizon. Journal of Industrial and Management Optimization, 2019, 15 (1) : 81-96. doi: 10.3934/jimo.2018033

[7]

Mou-Hsiung Chang, Tao Pang, Moustapha Pemy. Finite difference approximation for stochastic optimal stopping problems with delays. Journal of Industrial and Management Optimization, 2008, 4 (2) : 227-246. doi: 10.3934/jimo.2008.4.227

[8]

Yoshikazu Giga, Hirotoshi Kuroda. A counterexample to finite time stopping property for one-harmonic map flow. Communications on Pure and Applied Analysis, 2015, 14 (1) : 121-125. doi: 10.3934/cpaa.2015.14.121

[9]

Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the MAP/M/s+G queueing model with generally distributed patience times. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2505-2532. doi: 10.3934/jimo.2021078

[10]

Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817

[11]

Noureddine Jilani Ben Naouara, Faouzi Trabelsi. Generalization on optimal multiple stopping with application to swing options with random exercise rights number. Mathematical Control and Related Fields, 2015, 5 (4) : 807-826. doi: 10.3934/mcrf.2015.5.807

[12]

Gechun Liang, Wei Wei. Optimal switching at Poisson random intervention times. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1483-1505. doi: 10.3934/dcdsb.2016008

[13]

Marcin Studniarski. Finding all minimal elements of a finite partially ordered set by genetic algorithm with a prescribed probability. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 389-398. doi: 10.3934/naco.2011.1.389

[14]

Sanyi Tang, Wenhong Pang. On the continuity of the function describing the times of meeting impulsive set and its application. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1399-1406. doi: 10.3934/mbe.2017072

[15]

Alicia Cordero, José Martínez Alfaro, Pura Vindel. Bott integrable Hamiltonian systems on $S^{2}\times S^{1}$. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 587-604. doi: 10.3934/dcds.2008.22.587

[16]

Shigeaki Koike, Hiroaki Morimoto, Shigeru Sakaguchi. A linear-quadratic control problem with discretionary stopping. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 261-277. doi: 10.3934/dcdsb.2007.8.261

[17]

Yinfei Li, Shuping Chen. Optimal traffic signal control for an $M\times N$ traffic network. Journal of Industrial and Management Optimization, 2008, 4 (4) : 661-672. doi: 10.3934/jimo.2008.4.661

[18]

Ying Jiao, Idris Kharroubi. Information uncertainty related to marked random times and optimal investment. Probability, Uncertainty and Quantitative Risk, 2018, 3 (0) : 3-. doi: 10.1186/s41546-018-0029-8

[19]

Paula Kemp. Characterizations of conditionally complete partially ordered sets. Conference Publications, 2005, 2005 (Special) : 505-509. doi: 10.3934/proc.2005.2005.505

[20]

Thomas Ward, Yuki Yayama. Markov partitions reflecting the geometry of $\times2$, $\times3$. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 613-624. doi: 10.3934/dcds.2009.24.613

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (386)
  • HTML views (362)
  • Cited by (1)

Other articles
by authors

[Back to Top]