January  2017, 13(1): 505-529. doi: 10.3934/jimo.2016029

Optimal consumption with reference-dependent preferences in on-the-job search and savings

a. 

Institute of Systems Engineering, Tianjin University, Tianjin 300072, China

b. 

School of Management, Tianjin University of Technology, Tianjin 300384, China

Received  July 2014 Published  March 2016

This paper studies a model of on-the-job search and savings under reference-dependent preferences that implies loss aversion in a worker's consumption behaviors. The model analyzes how loss aversion affects the worker's consumption decisions in job search. The results demonstrate that the presence of loss aversion will lead to a set of high steady-state consumption levels and the range of steady-state consumption levels is wider if the worker is more loss averse. Nevertheless, we show that there is a unique steady-state consumption level, which is a lower bound of the set, in the absence of loss aversion. In addition, we also find that great loss aversion may reduce consumption level, while small loss aversion not only causes consumption to remain at a high level, but also induces that the worker's future consumption level goes down when the employment status changes.

Citation: Chi Zhou, Wansheng Tang, Ruiqing Zhao. Optimal consumption with reference-dependent preferences in on-the-job search and savings. Journal of Industrial and Management Optimization, 2017, 13 (1) : 505-529. doi: 10.3934/jimo.2016029
References:
[1]

M. AbdellaouiH. Bleichrodt and C. Paraschiv, Loss aversion under prospect theory: A parameter-free measurement, Management Science, 53 (2007), 1659-1674.  doi: 10.1287/mnsc.1070.0711.

[2]

S. R. Aiyagari, Uninsured idiosyncratic risk and aggregate saving, The Quarterly Journal of Economics, 109 (1994), 659-684.  doi: 10.2307/2118417.

[3]

R. Alessie and A. Lusardi, Consumption, saving and habit formation, Economics Letters, 55 (1997), 103-108.  doi: 10.1016/S0165-1765(97)00061-X.

[4]

Y. AlganA. ChéronJ.-O. Hairault and F. Langot, Wealth effect on labor market transitions, Review of Economic Dynamics, 6 (2003), 156-178.  doi: 10.1016/S1094-2025(02)00013-3.

[5]

V. Angelini, Consumption and habit formation when time horizon is finite, Economics Letters, 103 (2009), 113-116.  doi: 10.1016/j.econlet.2009.02.007.

[6]

J. Apesteguia and M. A. Ballester, A theory of reference-dependent behavior, Economic Theory, 40 (2009), 427-455.  doi: 10.1007/s00199-008-0387-z.

[7]

R. E. Bellman, Dynamic Programming, Princeton University Press, New Jersey, 1957.

[8]

D. BowmanD. Minehart and M. Rabin, Loss aversion in a consumption-savings model, Journal of Economic Behavior & Organization, 38 (1999), 155-178.  doi: 10.1016/S0167-2681(99)00004-9.

[9]

M. BrowningT. F. Crossley and E. Smith, Asset accumulation and short-term employment, Review of Economic Dynamics, 10 (2007), 400-423.  doi: 10.1016/j.red.2006.12.002.

[10]

R. Correa, A. Jofre and L. Thibault, Subdifferential characterization of convexity, in Recent Advances in Nonsmooth Optimization, World Scientific, River Edge, NJ, 1995, 18-23.

[11]

E. G. De Giorgi and S. Legg, Dynamic portfolio choice and asset pricing with narrow framing and probability weighting, Journal of Economic Dynamics and Control, 36 (2012), 951-972.  doi: 10.1016/j.jedc.2012.01.010.

[12]

E. G. De Giorgi and T. Post, Loss aversion with a state-dependent reference point, Management Science, 57 (2011), 1094-1110. 

[13]

R. A. Easterlin, Will raising the incomes of all increase the happiness of all?, Journal of Economic Behavior & Organization, 27 (1995), 35-47.  doi: 10.1016/0167-2681(95)00003-B.

[14]

R. FoellmiR. Rosenblatt-Wisch and K. R. Schenk-Hoppé, Consumption paths under prospect utility in an optimal growth model, Journal of Economic Dynamics and Control, 35 (2011), 273-281.  doi: 10.1016/j.jedc.2010.09.002.

[15]

L. Grüne and W. Semmler, Asset pricing with loss aversion, Journal of Economic Dynamics and Control, 32 (2008), 3253-3274.  doi: 10.1016/j.jedc.2008.01.002.

[16]

D. KahnemanJ. L. Knetsch and R. H. Thaler, Anomalies: The endowment effect, loss aversion, and status quo bias, The Journal of Economic Perspectives, 5 (1991), 193-206.  doi: 10.1257/jep.5.1.193.

[17]

D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica: Journal of the Econometric Society, 47 (1979), 263-291. 

[18]

B. Kőszegi and M. Rabin, A model of reference-dependent preferences, Quarterly Journal of Economics, 121 (2006), 1133-1165.  doi: 10.1093/qje/121.4.1133.

[19]

B. Kőszegi and M. Rabin, Reference-dependent risk attitudes, The American Economic Review, 97 (2007), 1047-1073. 

[20]

B. Kőszegi and M. Rabin, Reference-dependent consumption plans, The American Economic Review, 99 (2009), 909-936. 

[21]

M. Lammers, The effects of savings on reservation wages and search effort Labour Economics, 27, (2014), 83-98. doi: 10.1016/j.labeco.2014.03.001.

[22]

R. Lentz and T. Tranaes, Job search and savings: Wealth effects and duration dependence, Journal of Labor Economics, 23 (2005), 467-489.  doi: 10.1086/430284.

[23]

J. Lise, On-the-job search and precautionary savings, The Review of Economic Studies, 80 (2013), 1086-1113.  doi: 10.1093/restud/rds042.

[24]

J. Z. LiuK.-F. C. Yiu and K. L. Teo, Optimal investment-consumption problem with constraint, Journal of Industrial and Management Optimization, 9 (2013), 743-768.  doi: 10.3934/jimo.2013.9.743.

[25]

I. Popescu and Y. Wu, Dynamic pricing strategies with reference effects, Operations Research, 55 (2007), 413-429.  doi: 10.1287/opre.1070.0393.

[26]

S. Rendon, Job search and asset accumulation under borrowing constraints, International Economic Review, 47 (2006), 233-263.  doi: 10.1111/j.1468-2354.2006.00378.x.

[27]

R. Rosenblatt-Wisch, Loss aversion in aggregate macroeconomic time series, European Economic Review, 52 (2008), 1140-1159.  doi: 10.1016/j.euroecorev.2007.12.001.

[28]

J. RuanP. ShiC.-C. Lim and X. Wang, Relief supplies allocation and optimization by interval and fuzzy number approaches, Information Sciences, 303 (2015), 15-32.  doi: 10.1016/j.ins.2015.01.002.

[29]

A. Siegmann, Optimal saving rules for loss-averse agents under uncertainty, Economics Letters, 77 (2002), 27-34.  doi: 10.1016/S0165-1765(02)00113-1.

[30]

J. Spinnewijn, Unemployed but optimistic: Optimal insurance design with biased beliefs, Journal of the European Economic Association, 13 (2015), 130-167.  doi: 10.2139/ssrn.1291566.

[31]

N. L. Stokey and R. E. Lucas Jr., Recursive Methods in Economic Dynamics, Harvard University Press, Cambridge, MA, 1989.

[32]

L. Sun and L. Zhang, Optimal consumption and investment under irrational beliefs, Journal of Industrial and Management Optimization, 7 (2011), 139-156.  doi: 10.3934/jimo.2011.7.139.

[33]

S.H.M. TingC.-O. Ewald and W.-K. Wang, On the investment-uncertainty relationship in a real option model with stochastic volatility, Mathematical Social Sciences, 66 (2013), 22-32.  doi: 10.1016/j.mathsocsci.2013.01.005.

[34]

A. Tversky and D. Kahneman, Loss aversion in riskless choice: A reference-dependent model, The Quarterly Journal of Economics, 106 (1991), 1039-1061.  doi: 10.2307/2937956.

[35]

A. Tversky and D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty, Journal of Risk and Uncertainty, 5 (1992), 297-323.  doi: 10.1007/BF00122574.

[36]

A. Zhang and C.-O. Ewald, Optimal investment for a pension fund under inflation risk, Mathematical Methods of Operations Research, 71 (2010), 353-369.  doi: 10.1007/s00186-009-0294-5.

[37]

J. ZhangQ. GouJ. Zhang and L. Liang, Supply chain pricing decisions with price reduction during the selling season, International Journal of Production Research, 52 (2014), 165-187.  doi: 10.1080/00207543.2013.831189.

[38]

C. ZhouW. Tang and R. Zhao, An uncertain search model for recruitment problem with enterprise performance, Journal of Intelligent Manufacturing, (2014), 1-10.  doi: 10.1007/s10845-014-0997-1.

[39]

C. ZhouW. Tang and R. Zhao, Optimal stopping for dynamic recruitment problem with probabilistic loss of candidates, Sequential Analysis: Design Methods and Applications, 34 (2015), 187-210.  doi: 10.1080/07474946.2015.1030974.

show all references

References:
[1]

M. AbdellaouiH. Bleichrodt and C. Paraschiv, Loss aversion under prospect theory: A parameter-free measurement, Management Science, 53 (2007), 1659-1674.  doi: 10.1287/mnsc.1070.0711.

[2]

S. R. Aiyagari, Uninsured idiosyncratic risk and aggregate saving, The Quarterly Journal of Economics, 109 (1994), 659-684.  doi: 10.2307/2118417.

[3]

R. Alessie and A. Lusardi, Consumption, saving and habit formation, Economics Letters, 55 (1997), 103-108.  doi: 10.1016/S0165-1765(97)00061-X.

[4]

Y. AlganA. ChéronJ.-O. Hairault and F. Langot, Wealth effect on labor market transitions, Review of Economic Dynamics, 6 (2003), 156-178.  doi: 10.1016/S1094-2025(02)00013-3.

[5]

V. Angelini, Consumption and habit formation when time horizon is finite, Economics Letters, 103 (2009), 113-116.  doi: 10.1016/j.econlet.2009.02.007.

[6]

J. Apesteguia and M. A. Ballester, A theory of reference-dependent behavior, Economic Theory, 40 (2009), 427-455.  doi: 10.1007/s00199-008-0387-z.

[7]

R. E. Bellman, Dynamic Programming, Princeton University Press, New Jersey, 1957.

[8]

D. BowmanD. Minehart and M. Rabin, Loss aversion in a consumption-savings model, Journal of Economic Behavior & Organization, 38 (1999), 155-178.  doi: 10.1016/S0167-2681(99)00004-9.

[9]

M. BrowningT. F. Crossley and E. Smith, Asset accumulation and short-term employment, Review of Economic Dynamics, 10 (2007), 400-423.  doi: 10.1016/j.red.2006.12.002.

[10]

R. Correa, A. Jofre and L. Thibault, Subdifferential characterization of convexity, in Recent Advances in Nonsmooth Optimization, World Scientific, River Edge, NJ, 1995, 18-23.

[11]

E. G. De Giorgi and S. Legg, Dynamic portfolio choice and asset pricing with narrow framing and probability weighting, Journal of Economic Dynamics and Control, 36 (2012), 951-972.  doi: 10.1016/j.jedc.2012.01.010.

[12]

E. G. De Giorgi and T. Post, Loss aversion with a state-dependent reference point, Management Science, 57 (2011), 1094-1110. 

[13]

R. A. Easterlin, Will raising the incomes of all increase the happiness of all?, Journal of Economic Behavior & Organization, 27 (1995), 35-47.  doi: 10.1016/0167-2681(95)00003-B.

[14]

R. FoellmiR. Rosenblatt-Wisch and K. R. Schenk-Hoppé, Consumption paths under prospect utility in an optimal growth model, Journal of Economic Dynamics and Control, 35 (2011), 273-281.  doi: 10.1016/j.jedc.2010.09.002.

[15]

L. Grüne and W. Semmler, Asset pricing with loss aversion, Journal of Economic Dynamics and Control, 32 (2008), 3253-3274.  doi: 10.1016/j.jedc.2008.01.002.

[16]

D. KahnemanJ. L. Knetsch and R. H. Thaler, Anomalies: The endowment effect, loss aversion, and status quo bias, The Journal of Economic Perspectives, 5 (1991), 193-206.  doi: 10.1257/jep.5.1.193.

[17]

D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica: Journal of the Econometric Society, 47 (1979), 263-291. 

[18]

B. Kőszegi and M. Rabin, A model of reference-dependent preferences, Quarterly Journal of Economics, 121 (2006), 1133-1165.  doi: 10.1093/qje/121.4.1133.

[19]

B. Kőszegi and M. Rabin, Reference-dependent risk attitudes, The American Economic Review, 97 (2007), 1047-1073. 

[20]

B. Kőszegi and M. Rabin, Reference-dependent consumption plans, The American Economic Review, 99 (2009), 909-936. 

[21]

M. Lammers, The effects of savings on reservation wages and search effort Labour Economics, 27, (2014), 83-98. doi: 10.1016/j.labeco.2014.03.001.

[22]

R. Lentz and T. Tranaes, Job search and savings: Wealth effects and duration dependence, Journal of Labor Economics, 23 (2005), 467-489.  doi: 10.1086/430284.

[23]

J. Lise, On-the-job search and precautionary savings, The Review of Economic Studies, 80 (2013), 1086-1113.  doi: 10.1093/restud/rds042.

[24]

J. Z. LiuK.-F. C. Yiu and K. L. Teo, Optimal investment-consumption problem with constraint, Journal of Industrial and Management Optimization, 9 (2013), 743-768.  doi: 10.3934/jimo.2013.9.743.

[25]

I. Popescu and Y. Wu, Dynamic pricing strategies with reference effects, Operations Research, 55 (2007), 413-429.  doi: 10.1287/opre.1070.0393.

[26]

S. Rendon, Job search and asset accumulation under borrowing constraints, International Economic Review, 47 (2006), 233-263.  doi: 10.1111/j.1468-2354.2006.00378.x.

[27]

R. Rosenblatt-Wisch, Loss aversion in aggregate macroeconomic time series, European Economic Review, 52 (2008), 1140-1159.  doi: 10.1016/j.euroecorev.2007.12.001.

[28]

J. RuanP. ShiC.-C. Lim and X. Wang, Relief supplies allocation and optimization by interval and fuzzy number approaches, Information Sciences, 303 (2015), 15-32.  doi: 10.1016/j.ins.2015.01.002.

[29]

A. Siegmann, Optimal saving rules for loss-averse agents under uncertainty, Economics Letters, 77 (2002), 27-34.  doi: 10.1016/S0165-1765(02)00113-1.

[30]

J. Spinnewijn, Unemployed but optimistic: Optimal insurance design with biased beliefs, Journal of the European Economic Association, 13 (2015), 130-167.  doi: 10.2139/ssrn.1291566.

[31]

N. L. Stokey and R. E. Lucas Jr., Recursive Methods in Economic Dynamics, Harvard University Press, Cambridge, MA, 1989.

[32]

L. Sun and L. Zhang, Optimal consumption and investment under irrational beliefs, Journal of Industrial and Management Optimization, 7 (2011), 139-156.  doi: 10.3934/jimo.2011.7.139.

[33]

S.H.M. TingC.-O. Ewald and W.-K. Wang, On the investment-uncertainty relationship in a real option model with stochastic volatility, Mathematical Social Sciences, 66 (2013), 22-32.  doi: 10.1016/j.mathsocsci.2013.01.005.

[34]

A. Tversky and D. Kahneman, Loss aversion in riskless choice: A reference-dependent model, The Quarterly Journal of Economics, 106 (1991), 1039-1061.  doi: 10.2307/2937956.

[35]

A. Tversky and D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty, Journal of Risk and Uncertainty, 5 (1992), 297-323.  doi: 10.1007/BF00122574.

[36]

A. Zhang and C.-O. Ewald, Optimal investment for a pension fund under inflation risk, Mathematical Methods of Operations Research, 71 (2010), 353-369.  doi: 10.1007/s00186-009-0294-5.

[37]

J. ZhangQ. GouJ. Zhang and L. Liang, Supply chain pricing decisions with price reduction during the selling season, International Journal of Production Research, 52 (2014), 165-187.  doi: 10.1080/00207543.2013.831189.

[38]

C. ZhouW. Tang and R. Zhao, An uncertain search model for recruitment problem with enterprise performance, Journal of Intelligent Manufacturing, (2014), 1-10.  doi: 10.1007/s10845-014-0997-1.

[39]

C. ZhouW. Tang and R. Zhao, Optimal stopping for dynamic recruitment problem with probabilistic loss of candidates, Sequential Analysis: Design Methods and Applications, 34 (2015), 187-210.  doi: 10.1080/07474946.2015.1030974.

Figure 1.  Steady-state consumption levels under loss-neutral
Figure 2.  An example of kinked gain-loss utility function $v(z)$
Figure 3.  Steady-state consumption levels under loss-neutral and loss aversion
Figure 4.  The range of steady-state consumption levels under loss aversion
[1]

Ryan Loxton, Qun Lin. Optimal fleet composition via dynamic programming and golden section search. Journal of Industrial and Management Optimization, 2011, 7 (4) : 875-890. doi: 10.3934/jimo.2011.7.875

[2]

Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the mean-variance utility with state-dependent risk aversion. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1521-1533. doi: 10.3934/jimo.2016.12.1521

[3]

Behrad Erfani, Sadoullah Ebrahimnejad, Amirhossein Moosavi. An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGA-II and local search algorithm. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1801-1834. doi: 10.3934/jimo.2019030

[4]

Mohammed Abdelghany, Amr B. Eltawil, Zakaria Yahia, Kazuhide Nakata. A hybrid variable neighbourhood search and dynamic programming approach for the nurse rostering problem. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2051-2072. doi: 10.3934/jimo.2020058

[5]

Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial and Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1

[6]

Zuo Quan Xu, Fahuai Yi. An optimal consumption-investment model with constraint on consumption. Mathematical Control and Related Fields, 2016, 6 (3) : 517-534. doi: 10.3934/mcrf.2016014

[7]

Jingzhen Liu, Shiqi Yan, Shan Jiang, Jiaqin Wei. Optimal investment, consumption and life insurance strategies under stochastic differential utility with habit formation. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022040

[8]

Haiying Liu, Wenjie Bi, Kok Lay Teo, Naxing Liu. Dynamic optimal decision making for manufacturers with limited attention based on sparse dynamic programming. Journal of Industrial and Management Optimization, 2019, 15 (2) : 445-464. doi: 10.3934/jimo.2018050

[9]

Jeongmin Han. Local Lipschitz regularity for functions satisfying a time-dependent dynamic programming principle. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2617-2640. doi: 10.3934/cpaa.2020114

[10]

Shichen Zhang, Jianxiong Zhang, Jiang Shen, Wansheng Tang. A joint dynamic pricing and production model with asymmetric reference price effect. Journal of Industrial and Management Optimization, 2019, 15 (2) : 667-688. doi: 10.3934/jimo.2018064

[11]

Wei Liu, Shiji Song, Ying Qiao, Han Zhao, Huachang Wang. The loss-averse newsvendor problem with quantity-oriented reference point under CVaR criterion. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021085

[12]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Periodic solutions for time-dependent subdifferential evolution inclusions. Evolution Equations and Control Theory, 2017, 6 (2) : 277-297. doi: 10.3934/eect.2017015

[13]

Chao Zhao, Jixiang Song. Coordination of dual-channel supply chain considering differential pricing and loss-aversion based on quality control. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022053

[14]

Zhenhuan Yang, Wei Shen, Yiming Ying, Xiaoming Yuan. Stochastic AUC optimization with general loss. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4191-4212. doi: 10.3934/cpaa.2020188

[15]

Y. K. Lin, C. S. Chong. A tabu search algorithm to minimize total weighted tardiness for the job shop scheduling problem. Journal of Industrial and Management Optimization, 2016, 12 (2) : 703-717. doi: 10.3934/jimo.2016.12.703

[16]

Adel Dabah, Ahcene Bendjoudi, Abdelhakim AitZai. An efficient Tabu Search neighborhood based on reconstruction strategy to solve the blocking job shop scheduling problem. Journal of Industrial and Management Optimization, 2017, 13 (4) : 2015-2031. doi: 10.3934/jimo.2017029

[17]

Haibo Jin, Long Hai, Xiaoliang Tang. An optimal maintenance strategy for multi-state systems based on a system linear integral equation and dynamic programming. Journal of Industrial and Management Optimization, 2020, 16 (2) : 965-990. doi: 10.3934/jimo.2018188

[18]

Junling Han, Nengmin Wang, Zhengwen He, Bin Jiang. Optimal return and rebate mechanism based on demand sensitivity to reference price. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021087

[19]

Jingzhen Liu, Ka-Fai Cedric Yiu, Kok Lay Teo. Optimal investment-consumption problem with constraint. Journal of Industrial and Management Optimization, 2013, 9 (4) : 743-768. doi: 10.3934/jimo.2013.9.743

[20]

Lei Sun, Lihong Zhang. Optimal consumption and investment under irrational beliefs. Journal of Industrial and Management Optimization, 2011, 7 (1) : 139-156. doi: 10.3934/jimo.2011.7.139

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (325)
  • HTML views (350)
  • Cited by (0)

Other articles
by authors

[Back to Top]