
-
Previous Article
Parallel-machine scheduling with potential disruption and positional-dependent processing times
- JIMO Home
- This Issue
-
Next Article
The bundle scheme for solving arbitrary eigenvalue optimizations
Algorithms for single-machine scheduling problem with deterioration depending on a novel model
1. | Accounting R & D Center, Chongqing University of Technology, Chongqing 400054, China |
2. | College of Information Science and Engineering, Northeastern University, State Key Laboratory of Integrated Automation of Process Industry (Northeastern University) Shenyang 110004, China |
3. | Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong 110004, China |
4. | College of Management, Chongqing University of Technology, Chongqing 400054, China |
In this paper, a novel single machine scheduling problem with deterioration depending on waiting times is investigated. Firstly, a new deterioration model for the problem is presented. Secondly, according to characteristics of the problem, dominance properties and lower bounds are proposed and integrated into the Branch and Bound algorithm (B & B) to solve the small-medium scale problems. Thirdly, for solving a large-scale problem, the Rules Guided Nested Partitions method (RGNP) is proposed. The numerical experiments show that when the size of the problem is no more than 17 jobs, the B & B algorithm can obtain the optimal solutions in a reasonable time. The RGNP method can also obtain an average error percentage for near-optimal solutions less than 0.048 within 0.2s. The analysis shows the efficiency of RGNP, and, hence, it can be used for solving large size problems.
References:
[1] |
S. Browne and U. Yechiali,
Scheduling deteriorating jobs on a single processor, Operations Research, 38 (1990), 495-498.
doi: 10.1287/opre.38.3.495. |
[2] |
T. C. E. Cheng and Q. Ding,
The complexity of scheduling starting time dependent tasks with release times, Information Processing Letters, 65 (1998), 75-79.
doi: 10.1016/S0020-0190(97)00195-6. |
[3] |
T. C. E. Cheng, W. C. Lee and C. C. Wu,
Single-machine scheduling with deteriorating functions for job processing times, Applied Mathematical Modelling, 34 (2010), 4171-4178.
doi: 10.1016/j.apm.2010.04.014. |
[4] |
C. B. Chu,
A branch-and-bound algorithm to minimize total flow time with unequal release dates, Naval Research Logistics, 39 (1992), 859-875.
doi: 10.1002/1520-6750(199210)39:6<859::AID-NAV3220390610>3.0.CO;2-W. |
[5] |
R. J. Dakin,
A tree-search algorithm for mixed integer programming problem, The Computer Journal, 8 (1965), 250-255.
doi: 10.1093/comjnl/8.3.250. |
[6] |
R. L. Graham, E. L. Lawler and J. K. Lenstra,
Optimization and approximation in the deterministic sequencing and scheduling: A survey, Annals of Discrete Mathematics, 5 (1979), 287-326.
doi: 10.1016/S0167-5060(08)70356-X. |
[7] |
J. N. D. Gupta and S. K. Gupta,
Single facility scheduling with nonlinear processing times, Computers and Industrial Engineering, 14 (1998), 387-393.
doi: 10.1016/0360-8352(88)90041-1. |
[8] |
I. Kacem and E. Levner,
An Improved approximation scheme for scheduling a maintenance and proportional deteriorating jobs, Journal of Industrial and Management Optimization, 12 (2016), 811-817.
|
[9] |
P. J. Lai and W. C. Lee,
Single-machine scheduling with a nonlinear deterioration function, Information Processing Letters, 110 (2010), 455-459.
doi: 10.1016/j.ipl.2010.04.012. |
[10] |
A. H. Land and A. G. Doig,
An automatic method of solving discrete programming problems, Econometrica, 28 (1960), 497-520.
doi: 10.2307/1910129. |
[11] |
Y. K. Lin and C. S. Chong,
A tabu search algorithm to minimize total weighted tardiness for the job shop scheduling problem, Journal of Industrial and Management Optimization, 12 (2016), 703-717.
doi: 10.3934/jimo.2016.12.703. |
[12] |
S. Olafsson and J. Yang,
Intelligent partitioning for feature selection, INFORMS Journal on Computing, 17 (2005), 339-355.
doi: 10.1287/ijoc.1040.0104. |
[13] |
D. Oron,
Scheduling controllable processing time jobs in a deteriorating environment, Journal of the Operational Research Society, 1 (2014), 49-56.
|
[14] |
L. Pi, Y. Pan and L. Shi,
Hybrid nested partitions and mathematical programming approach and its applications, IEEE Transactions on Automation Science & Engineering, 5 (2008), 573-586.
|
[15] |
J. Qian and G. Steiner,
Fast algorithms for scheduling with learning effects and time-dependent processing times on a single machine, European Journal of Operational Research, 225 (2013), 547-551.
doi: 10.1016/j.ejor.2012.09.013. |
[16] |
A. J. Ruiz-Torres, G. Paletta and E. Pérez,
Parallel machine scheduling to minimize the makespan with sequence dependent deteriorating effects, Computers & Operations Research, 40 (2013), 2051-2061.
doi: 10.1016/j.cor.2013.02.018. |
[17] |
P. Shen, C. M. Wei and X. Huang,
Single-machine scheduling problems with an actual time-dependent deterioration, Applied Mathematical Modelling, 37 (2013), 5555-5562.
doi: 10.1016/j.apm.2012.10.012. |
[18] |
L. Shi and S. Olafsson,
Nested partitions method for global optimization, Operations Research, 48 (2000), 390-407.
doi: 10.1287/opre.48.3.390.12436. |
[19] |
L. Shi, S. Olafsson and Q. Chen,
An optimization framework for product design, Management Science, 47 (2001), 1681-1692.
doi: 10.1287/mnsc.47.12.1681.10243. |
[20] |
S. A. Shihabi and S. Olafsson,
A hybrid of nested partition, binary ant system, and linear programming for the multidimensional knapsack problem, Computers & Operations Research, 37 (2010), 247-255.
doi: 10.1016/j.cor.2009.04.015. |
[21] |
P. Yan, A. Che, X. Cai and X. Tang,
Two-phase branch and bound algorithm for robotic cells rescheduling considering limited disturbance, Name of the Journal, 50 (2014), 128-140.
doi: 10.1016/j.cor.2014.04.002. |
[22] |
P. Yan, C. Chu, N. Yang and A. Che,
A branch and bound algorithm for optimal cyclic scheduling in a robotic cell with processing time windows, International Journal of Production Research, 48 (2010), 6461-6480.
doi: 10.1080/00207540903225205. |
[23] |
Y. Yin, W. H. Wu, T. C. E. Cheng and C. C. Wu,
Single-machine scheduling with time-dependent and position-dependent deteriorating jobs, International Journal of Computer Integrated Manufacturing, 28 (2015), 781-790.
doi: 10.1080/0951192X.2014.900872. |
[24] |
X. Zhang, D. Xu, D. Du and C. Miao,
Approximate algorithms for unrelated machine scheduling to minimize makespan, Jorunal of Industrial and Management Optimization, 12 (2016), 771-779.
doi: 10.3934/jimo.2016.12.771. |
show all references
References:
[1] |
S. Browne and U. Yechiali,
Scheduling deteriorating jobs on a single processor, Operations Research, 38 (1990), 495-498.
doi: 10.1287/opre.38.3.495. |
[2] |
T. C. E. Cheng and Q. Ding,
The complexity of scheduling starting time dependent tasks with release times, Information Processing Letters, 65 (1998), 75-79.
doi: 10.1016/S0020-0190(97)00195-6. |
[3] |
T. C. E. Cheng, W. C. Lee and C. C. Wu,
Single-machine scheduling with deteriorating functions for job processing times, Applied Mathematical Modelling, 34 (2010), 4171-4178.
doi: 10.1016/j.apm.2010.04.014. |
[4] |
C. B. Chu,
A branch-and-bound algorithm to minimize total flow time with unequal release dates, Naval Research Logistics, 39 (1992), 859-875.
doi: 10.1002/1520-6750(199210)39:6<859::AID-NAV3220390610>3.0.CO;2-W. |
[5] |
R. J. Dakin,
A tree-search algorithm for mixed integer programming problem, The Computer Journal, 8 (1965), 250-255.
doi: 10.1093/comjnl/8.3.250. |
[6] |
R. L. Graham, E. L. Lawler and J. K. Lenstra,
Optimization and approximation in the deterministic sequencing and scheduling: A survey, Annals of Discrete Mathematics, 5 (1979), 287-326.
doi: 10.1016/S0167-5060(08)70356-X. |
[7] |
J. N. D. Gupta and S. K. Gupta,
Single facility scheduling with nonlinear processing times, Computers and Industrial Engineering, 14 (1998), 387-393.
doi: 10.1016/0360-8352(88)90041-1. |
[8] |
I. Kacem and E. Levner,
An Improved approximation scheme for scheduling a maintenance and proportional deteriorating jobs, Journal of Industrial and Management Optimization, 12 (2016), 811-817.
|
[9] |
P. J. Lai and W. C. Lee,
Single-machine scheduling with a nonlinear deterioration function, Information Processing Letters, 110 (2010), 455-459.
doi: 10.1016/j.ipl.2010.04.012. |
[10] |
A. H. Land and A. G. Doig,
An automatic method of solving discrete programming problems, Econometrica, 28 (1960), 497-520.
doi: 10.2307/1910129. |
[11] |
Y. K. Lin and C. S. Chong,
A tabu search algorithm to minimize total weighted tardiness for the job shop scheduling problem, Journal of Industrial and Management Optimization, 12 (2016), 703-717.
doi: 10.3934/jimo.2016.12.703. |
[12] |
S. Olafsson and J. Yang,
Intelligent partitioning for feature selection, INFORMS Journal on Computing, 17 (2005), 339-355.
doi: 10.1287/ijoc.1040.0104. |
[13] |
D. Oron,
Scheduling controllable processing time jobs in a deteriorating environment, Journal of the Operational Research Society, 1 (2014), 49-56.
|
[14] |
L. Pi, Y. Pan and L. Shi,
Hybrid nested partitions and mathematical programming approach and its applications, IEEE Transactions on Automation Science & Engineering, 5 (2008), 573-586.
|
[15] |
J. Qian and G. Steiner,
Fast algorithms for scheduling with learning effects and time-dependent processing times on a single machine, European Journal of Operational Research, 225 (2013), 547-551.
doi: 10.1016/j.ejor.2012.09.013. |
[16] |
A. J. Ruiz-Torres, G. Paletta and E. Pérez,
Parallel machine scheduling to minimize the makespan with sequence dependent deteriorating effects, Computers & Operations Research, 40 (2013), 2051-2061.
doi: 10.1016/j.cor.2013.02.018. |
[17] |
P. Shen, C. M. Wei and X. Huang,
Single-machine scheduling problems with an actual time-dependent deterioration, Applied Mathematical Modelling, 37 (2013), 5555-5562.
doi: 10.1016/j.apm.2012.10.012. |
[18] |
L. Shi and S. Olafsson,
Nested partitions method for global optimization, Operations Research, 48 (2000), 390-407.
doi: 10.1287/opre.48.3.390.12436. |
[19] |
L. Shi, S. Olafsson and Q. Chen,
An optimization framework for product design, Management Science, 47 (2001), 1681-1692.
doi: 10.1287/mnsc.47.12.1681.10243. |
[20] |
S. A. Shihabi and S. Olafsson,
A hybrid of nested partition, binary ant system, and linear programming for the multidimensional knapsack problem, Computers & Operations Research, 37 (2010), 247-255.
doi: 10.1016/j.cor.2009.04.015. |
[21] |
P. Yan, A. Che, X. Cai and X. Tang,
Two-phase branch and bound algorithm for robotic cells rescheduling considering limited disturbance, Name of the Journal, 50 (2014), 128-140.
doi: 10.1016/j.cor.2014.04.002. |
[22] |
P. Yan, C. Chu, N. Yang and A. Che,
A branch and bound algorithm for optimal cyclic scheduling in a robotic cell with processing time windows, International Journal of Production Research, 48 (2010), 6461-6480.
doi: 10.1080/00207540903225205. |
[23] |
Y. Yin, W. H. Wu, T. C. E. Cheng and C. C. Wu,
Single-machine scheduling with time-dependent and position-dependent deteriorating jobs, International Journal of Computer Integrated Manufacturing, 28 (2015), 781-790.
doi: 10.1080/0951192X.2014.900872. |
[24] |
X. Zhang, D. Xu, D. Du and C. Miao,
Approximate algorithms for unrelated machine scheduling to minimize makespan, Jorunal of Industrial and Management Optimization, 12 (2016), 771-779.
doi: 10.3934/jimo.2016.12.771. |


Average error rate | Average CPU time(s) | |||||||
RGNP | ONP | B & B | RGNP | ONP | ||||
5 | 0.05 | 0.2 | 0.000 | 0.000 | 1.07 | 0.00 | 0.00 | |
1.0 | 0.034 | 0.054 | 1.26 | 0.00 | 0.00 | |||
3.0 | 0.000 | 0.000 | 0.94 | 0.00 | 0.00 | |||
0.10 | 0.2 | 0.000 | 0.004 | 1.17 | 0.00 | 0.00 | ||
1.0 | 0.000 | 0.000 | 1.36 | 0.00 | 0.00 | |||
3.0 | 0.000 | 0.005 | 0.82 | 0.00 | 0.00 | |||
Average CPU time | 1.10 | 0.00 | 0.00 | |||||
9 | 0.05 | 0.2 | 0.000 | 0.002 | 1.50 | 0.01 | 0.00 | |
1.0 | 0.010 | 0.106 | 1.21 | 0.01 | 0.01 | |||
3.0 | 0.000 | 0.012 | 114.30 | 0.01 | 0.00 | |||
0.10 | 0.2 | 0.000 | 0.015 | 1.38 | 0.01 | 0.00 | ||
1.0 | 0.000 | 0.070 | 11.04 | 0.01 | 0.00 | |||
3.0 | 0.016 | 0.071 | 21.53 | 0.01 | 0.01 | |||
Average CPU time | 1315.55 | 0.04 | 0.02 | |||||
13 | 0.05 | 0.2 | 0.008 | 0.028 | 16.88 | 0.04 | 0.02 | |
1.0 | 0.016 | 0.300 | 51.19 | 0.05 | 0.02 | |||
3.0 | 0.000 | 0.031 | 6041.71 | 0.06 | 0.01 | |||
0.10 | 0.2 | 0.028 | 0.057 | 13.16 | 0.04 | 0.02 | ||
1.0 | 0.021 | 0.221 | 35.32 | 0.05 | 0.02 | |||
3.0 | 0.000 | 0.109 | 1735.06 | 0.04 | 0.01 | |||
Average CPU time | 25.16 | 0.01 | 0.00 | |||||
17 | 0.05 | 0.2 | 0.018 | 0.038 | 1007.11 | 0.18 | 0.07 | |
1.0 | 0.015 | 0.200 | 1222.28 | 0.18 | 0.07 | |||
3.0 | 0.012 | 0.216 | 38012.51 | 0.18 | 0.07 | |||
0.10 | 0.2 | 0.048 | 0.116 | 610.34 | 0.12 | 0.07 | ||
1.0 | 0.022 | 0.444 | 1958.67 | 0.12 | 0.07 | |||
3.0 | 0.012 | 0.245 | 18292.45 | 0.12 | 0.07 | |||
Average CPU time | 10183.89 | 0.15 | 0.07 |
Average error rate | Average CPU time(s) | |||||||
RGNP | ONP | B & B | RGNP | ONP | ||||
5 | 0.05 | 0.2 | 0.000 | 0.000 | 1.07 | 0.00 | 0.00 | |
1.0 | 0.034 | 0.054 | 1.26 | 0.00 | 0.00 | |||
3.0 | 0.000 | 0.000 | 0.94 | 0.00 | 0.00 | |||
0.10 | 0.2 | 0.000 | 0.004 | 1.17 | 0.00 | 0.00 | ||
1.0 | 0.000 | 0.000 | 1.36 | 0.00 | 0.00 | |||
3.0 | 0.000 | 0.005 | 0.82 | 0.00 | 0.00 | |||
Average CPU time | 1.10 | 0.00 | 0.00 | |||||
9 | 0.05 | 0.2 | 0.000 | 0.002 | 1.50 | 0.01 | 0.00 | |
1.0 | 0.010 | 0.106 | 1.21 | 0.01 | 0.01 | |||
3.0 | 0.000 | 0.012 | 114.30 | 0.01 | 0.00 | |||
0.10 | 0.2 | 0.000 | 0.015 | 1.38 | 0.01 | 0.00 | ||
1.0 | 0.000 | 0.070 | 11.04 | 0.01 | 0.00 | |||
3.0 | 0.016 | 0.071 | 21.53 | 0.01 | 0.01 | |||
Average CPU time | 1315.55 | 0.04 | 0.02 | |||||
13 | 0.05 | 0.2 | 0.008 | 0.028 | 16.88 | 0.04 | 0.02 | |
1.0 | 0.016 | 0.300 | 51.19 | 0.05 | 0.02 | |||
3.0 | 0.000 | 0.031 | 6041.71 | 0.06 | 0.01 | |||
0.10 | 0.2 | 0.028 | 0.057 | 13.16 | 0.04 | 0.02 | ||
1.0 | 0.021 | 0.221 | 35.32 | 0.05 | 0.02 | |||
3.0 | 0.000 | 0.109 | 1735.06 | 0.04 | 0.01 | |||
Average CPU time | 25.16 | 0.01 | 0.00 | |||||
17 | 0.05 | 0.2 | 0.018 | 0.038 | 1007.11 | 0.18 | 0.07 | |
1.0 | 0.015 | 0.200 | 1222.28 | 0.18 | 0.07 | |||
3.0 | 0.012 | 0.216 | 38012.51 | 0.18 | 0.07 | |||
0.10 | 0.2 | 0.048 | 0.116 | 610.34 | 0.12 | 0.07 | ||
1.0 | 0.022 | 0.444 | 1958.67 | 0.12 | 0.07 | |||
3.0 | 0.012 | 0.245 | 18292.45 | 0.12 | 0.07 | |||
Average CPU time | 10183.89 | 0.15 | 0.07 |
AER | Time(s) | ||||||
RGNP | ONP | RGNP | ONP | ||||
20 | 0.05 | 0.2 | 0.000 | 0.015 | 0.06 | 0.03 | |
1.0 | 0.000 | 0.723 | 0.06 | 0.05 | |||
3.0 | 0.000 | 0.009 | 0.07 | 0.05 | |||
0.1 | 0.2 | 0.000 | 0.014 | 0.08 | 0.04 | ||
1.0 | 0.000 | 1.447 | 0.09 | 0.04 | |||
3.0 | 0.000 | 0.123 | 0.08 | 0.04 | |||
40 | 0.05 | 0.2 | 0.000 | 0.079 | 0.67 | 0.34 | |
1.0 | 0.000 | 1.008 | 0.62 | 0.28 | |||
3.0 | 0.000 | 0.219 | 0.68 | 0.31 | |||
0.1 | 0.2 | 0.000 | 0.282 | 0.67 | 0.32 | ||
1.0 | 0.000 | 1.281 | 0.67 | 0.30 | |||
3.0 | 0.000 | 1.878 | 0.67 | 0.32 | |||
60 | 0.05 | 0.2 | 0.000 | 0.212 | 2.49 | 1.06 | |
1.0 | 0.000 | 1.164 | 1.87 | 0.75 | |||
3.0 | 0.000 | 0.188 | 1.87 | 0.76 | |||
0.1 | 0.2 | 0.000 | 0.007 | 1.80 | 0.76 | ||
1.0 | 0.000 | 3.898 | 1.89 | 0.75 | |||
3.0 | 0.000 | 7.127 | 1.88 | 0.76 | |||
80 | 0.05 | 0.2 | 0.000 | 0.135 | 4.95 | 1.87 | |
1.0 | 0.000 | 1.623 | 5.07 | 1.85 | |||
3.0 | 0.000 | 1.861 | 5.18 | 1.88 | |||
0.1 | 0.2 | 0.000 | 0.199 | 4.87 | 1.91 | ||
1.0 | 0.000 | 10.61 | 5.01 | 1.87 | |||
3.0 | 0.000 | 0.459 | 5.16 | 1.89 | |||
100 | 0.05 | 0.2 | 0.000 | 0.072 | 10.91 | 4.02 | |
1.0 | 0.000 | 9.025 | 11.41 | 3.98 | |||
3.0 | 0.000 | 7.454 | 11.43 | 3.96 | |||
0.1 | 0.2 | 0.000 | 0.262 | 11.40 | 4.23 | ||
1.0 | 0.000 | 3.742 | 11.66 | 4.11 | |||
3.0 | 0.000 | 21.139 | 11.59 | 4.19 | |||
120 | 0.05 | 0.2 | 0.000 | 0.171 | 20.98 | 7.49 | |
1.0 | 0.000 | 3.260 | 21.29 | 7.39 | |||
3.0 | 0.000 | 20.191 | 21.24 | 7.51 | |||
0.1 | 0.2 | 0.000 | 0.063 | 20.13 | 7.20 | ||
1.0 | 0.000 | 7.355 | 21.05 | 7.76 | |||
3.0 | 0.000 | 76.76 | 21.06 | 7.52 |
AER | Time(s) | ||||||
RGNP | ONP | RGNP | ONP | ||||
20 | 0.05 | 0.2 | 0.000 | 0.015 | 0.06 | 0.03 | |
1.0 | 0.000 | 0.723 | 0.06 | 0.05 | |||
3.0 | 0.000 | 0.009 | 0.07 | 0.05 | |||
0.1 | 0.2 | 0.000 | 0.014 | 0.08 | 0.04 | ||
1.0 | 0.000 | 1.447 | 0.09 | 0.04 | |||
3.0 | 0.000 | 0.123 | 0.08 | 0.04 | |||
40 | 0.05 | 0.2 | 0.000 | 0.079 | 0.67 | 0.34 | |
1.0 | 0.000 | 1.008 | 0.62 | 0.28 | |||
3.0 | 0.000 | 0.219 | 0.68 | 0.31 | |||
0.1 | 0.2 | 0.000 | 0.282 | 0.67 | 0.32 | ||
1.0 | 0.000 | 1.281 | 0.67 | 0.30 | |||
3.0 | 0.000 | 1.878 | 0.67 | 0.32 | |||
60 | 0.05 | 0.2 | 0.000 | 0.212 | 2.49 | 1.06 | |
1.0 | 0.000 | 1.164 | 1.87 | 0.75 | |||
3.0 | 0.000 | 0.188 | 1.87 | 0.76 | |||
0.1 | 0.2 | 0.000 | 0.007 | 1.80 | 0.76 | ||
1.0 | 0.000 | 3.898 | 1.89 | 0.75 | |||
3.0 | 0.000 | 7.127 | 1.88 | 0.76 | |||
80 | 0.05 | 0.2 | 0.000 | 0.135 | 4.95 | 1.87 | |
1.0 | 0.000 | 1.623 | 5.07 | 1.85 | |||
3.0 | 0.000 | 1.861 | 5.18 | 1.88 | |||
0.1 | 0.2 | 0.000 | 0.199 | 4.87 | 1.91 | ||
1.0 | 0.000 | 10.61 | 5.01 | 1.87 | |||
3.0 | 0.000 | 0.459 | 5.16 | 1.89 | |||
100 | 0.05 | 0.2 | 0.000 | 0.072 | 10.91 | 4.02 | |
1.0 | 0.000 | 9.025 | 11.41 | 3.98 | |||
3.0 | 0.000 | 7.454 | 11.43 | 3.96 | |||
0.1 | 0.2 | 0.000 | 0.262 | 11.40 | 4.23 | ||
1.0 | 0.000 | 3.742 | 11.66 | 4.11 | |||
3.0 | 0.000 | 21.139 | 11.59 | 4.19 | |||
120 | 0.05 | 0.2 | 0.000 | 0.171 | 20.98 | 7.49 | |
1.0 | 0.000 | 3.260 | 21.29 | 7.39 | |||
3.0 | 0.000 | 20.191 | 21.24 | 7.51 | |||
0.1 | 0.2 | 0.000 | 0.063 | 20.13 | 7.20 | ||
1.0 | 0.000 | 7.355 | 21.05 | 7.76 | |||
3.0 | 0.000 | 76.76 | 21.06 | 7.52 |
[1] |
Güvenç Şahin, Ravindra K. Ahuja. Single-machine scheduling with stepwise tardiness costs and release times. Journal of Industrial and Management Optimization, 2011, 7 (4) : 825-848. doi: 10.3934/jimo.2011.7.825 |
[2] |
Yunqiang Yin, T. C. E. Cheng, Jianyou Xu, Shuenn-Ren Cheng, Chin-Chia Wu. Single-machine scheduling with past-sequence-dependent delivery times and a linear deterioration. Journal of Industrial and Management Optimization, 2013, 9 (2) : 323-339. doi: 10.3934/jimo.2013.9.323 |
[3] |
Ping Yan, Ji-Bo Wang, Li-Qiang Zhao. Single-machine bi-criterion scheduling with release times and exponentially time-dependent learning effects. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1117-1131. doi: 10.3934/jimo.2018088 |
[4] |
Z.G. Feng, K.L. Teo, Y. Zhao. Branch and bound method for sensor scheduling in discrete time. Journal of Industrial and Management Optimization, 2005, 1 (4) : 499-512. doi: 10.3934/jimo.2005.1.499 |
[5] |
Thomas Ward, Yuki Yayama. Markov partitions reflecting the geometry of $\times2$, $\times3$. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 613-624. doi: 10.3934/dcds.2009.24.613 |
[6] |
Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the $ MAP/M/s+G $ queueing model with generally distributed patience times. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021078 |
[7] |
Ji-Bo Wang, Bo Zhang, Hongyu He. A unified analysis for scheduling problems with variable processing times. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1063-1077. doi: 10.3934/jimo.2021008 |
[8] |
Mehmet Duran Toksari, Emel Kizilkaya Aydogan, Berrin Atalay, Saziye Sari. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1795-1807. doi: 10.3934/jimo.2021044 |
[9] |
Si-Han Wang, Dan-Yang Lv, Ji-Bo Wang. Research on position-dependent weights scheduling with delivery times and truncated sum-of-processing-times-based learning effect. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022066 |
[10] |
Zhao-Hong Jia, Ting-Ting Wen, Joseph Y.-T. Leung, Kai Li. Effective heuristics for makespan minimization in parallel batch machines with non-identical capacities and job release times. Journal of Industrial and Management Optimization, 2017, 13 (2) : 977-993. doi: 10.3934/jimo.2016057 |
[11] |
P. Liu, Xiwen Lu. Online scheduling of two uniform machines to minimize total completion times. Journal of Industrial and Management Optimization, 2009, 5 (1) : 95-102. doi: 10.3934/jimo.2009.5.95 |
[12] |
Zhimin Zhang. On a risk model with randomized dividend-decision times. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1041-1058. doi: 10.3934/jimo.2014.10.1041 |
[13] |
Bin Zheng, Min Fan, Mengqi Liu, Shang-Chia Liu, Yunqiang Yin. Parallel-machine scheduling with potential disruption and positional-dependent processing times. Journal of Industrial and Management Optimization, 2017, 13 (2) : 697-711. doi: 10.3934/jimo.2016041 |
[14] |
Jiping Tao, Zhijun Chao, Yugeng Xi. A semi-online algorithm and its competitive analysis for a single machine scheduling problem with bounded processing times. Journal of Industrial and Management Optimization, 2010, 6 (2) : 269-282. doi: 10.3934/jimo.2010.6.269 |
[15] |
Chengxin Luo. Single machine batch scheduling problem to minimize makespan with controllable setup and jobs processing times. Numerical Algebra, Control and Optimization, 2015, 5 (1) : 71-77. doi: 10.3934/naco.2015.5.71 |
[16] |
Chuanli Zhao, Yunqiang Yin, T. C. E. Cheng, Chin-Chia Wu. Single-machine scheduling and due date assignment with rejection and position-dependent processing times. Journal of Industrial and Management Optimization, 2014, 10 (3) : 691-700. doi: 10.3934/jimo.2014.10.691 |
[17] |
Xianyu Yu, Dar-Li Yang, Dequn Zhou, Peng Zhou. Multi-machine scheduling with interval constrained position-dependent processing times. Journal of Industrial and Management Optimization, 2018, 14 (2) : 803-815. doi: 10.3934/jimo.2017076 |
[18] |
Yunqing Zou, Zhengkui Lin, Dongya Han, T. C. Edwin Cheng, Chin-Chia Wu. Two-agent integrated scheduling of production and distribution operations with fixed departure times. Journal of Industrial and Management Optimization, 2022, 18 (2) : 985-1007. doi: 10.3934/jimo.2021005 |
[19] |
Adel Settati, Aadil Lahrouz, Mustapha El Jarroudi, Mohamed El Fatini, Kai Wang. On the threshold dynamics of the stochastic SIRS epidemic model using adequate stopping times. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1985-1997. doi: 10.3934/dcdsb.2020012 |
[20] |
Maria Antonietta Farina, Monica Marras, Giuseppe Viglialoro. On explicit lower bounds and blow-up times in a model of chemotaxis. Conference Publications, 2015, 2015 (special) : 409-417. doi: 10.3934/proc.2015.0409 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]