[1]
|
H. Albrecher, E. C. K. Cheung and S. Thonhauser, Randommized observation times for the compound Poisson risk model: Dividends, Astin Bulletin, 41 (2011), 645-672.
|
[2]
|
H. Albrecher, E. C. K. Cheung and S. Thonhauser, Randomized observation periods for the compound Poisson risk model: the discounted penalty function, Scandinavian Actuarial Journal, 6 (2013), 424-452.
doi: 10.1080/03461238.2011.624686.
|
[3]
|
S. Asmussen, F. Avram and M. Usabel, Erlangian approximations for finite-horizon ruin probabilities, ASTIN Bulletin, 32 (2002), 267-281.
doi: 10.2143/AST.32.2.1029.
|
[4]
|
S. Chadjiconstantinidis and A. D. Papaioannou, On a perturbed by diffusion compound Poisson risk model with delayed claims and multi-layer dividend strategy, Journal of Computational and Applied Mathematics, 253 (2013), 26-50.
doi: 10.1016/j.cam.2013.02.014.
|
[5]
|
H. U. Gerber, An extension of the renewal equation and its application in the collective theory of risk, Skandinavisk Aktuarietidskrift, 1970 (1970), 205-210.
|
[6]
|
H. U. Gerber and E. S. W. Shiu, On the time value of ruin, North American Actuarial Journal, 2 (1998), 48-78.
doi: 10.1080/10920277.1998.10595671.
|
[7]
|
V. Klimenok, On the modification of Rouche's theorem for the queuing theory problems, ueuing Systems, 38 (2001), 431-434.
doi: 10.1023/A:1010999928701.
|
[8]
|
A. E. Kyprianou,
Introductory Lectures on Fluctuations of Lévy Processes with Applications, Springer-Verlag, Berlin, 2006.
|
[9]
|
S. Li, D. Landriault and C. Lemieux, A risk model with varying premiums: Its risk management implications, Insurance: Mathematics and Economics, 60 (2015), 38-46.
doi: 10.1016/j.insmatheco.2014.10.010.
|
[10]
|
C. Liu and Z. Zhang, On a generalized Gerber-Shiu function in a compound Poisson model perturbed by diffusion, Advances in Difference Equations, 2015 (2015), 1-20.
doi: 10.1186/s13662-015-0378-x.
|
[11]
|
D. A. Stanford, F. Avram, A. L. Badescu, L. Breuer and A. Da Silva Soares, Phase-type approximations to finite-time ruin probabilities in the Sparre-Anderson and stationary renewal risk models, ASTIN Bulletin, 35 (2005), 131-144.
doi: 10.2143/AST.35.1.583169.
|
[12]
|
D. A. Stanford, K. Yu and J. Ren, Erlangian approximation to finite time ruin probabilities in perturbed risk models, Scandinavian Actuarial Journal, 2011 (2011), 38-58.
doi: 10.1080/03461230903421492.
|
[13]
|
C. C. L. Tsai, On the discounted distribution functions of the surplus process perturbed by diffusion, Insurance: Mathematics and Economics, 28 (2001), 401-419.
doi: 10.1016/S0167-6687(01)00067-1.
|
[14]
|
C. C. L. Tsai and G. E. Willmot, A generalized defective renewal equation for the surplus process perturbed by diffusion, Insurance: Mathematics and Economics, 30 (2002), 51-66.
doi: 10.1016/S0167-6687(01)00096-8.
|
[15]
|
C. Yang and K. P. Sendova, The ruin time under the Sparre-Andersen dual model, Insurance: Mathematics and Economics, 54 (2014), 28-40.
doi: 10.1016/j.insmatheco.2013.10.012.
|
[16]
|
Z. Zhang and E. C. K. Cheung, The Markov additive risk process under an Erlangized dividend barrier strategy, Methodology and Computing in Applied Probability, 18 (2016), 275-306.
doi: 10.1007/s11009-014-9414-7.
|
[17]
|
Z. Zhang and H. Yang, Gerber-Shiu analysis in a perturbed risk model with dependence between claim sizes and interclaim times, Journal of Computational and Applied Mathematics, 235 (2011), 1189-1204.
doi: 10.1016/j.cam.2010.08.003.
|
[18]
|
Z. Zhang, H. Yang and H. Yang, On a Sparre Andersen risk model with time-dependent claim sizes and jump-diffusion perturbation, Methodology and Computing in Applied Probability, 14 (2012), 973-995.
doi: 10.1007/s11009-011-9215-1.
|
[19]
|
M. Zhou and J. Cai, A perturbed risk model with dependence between premium rates and claim sizes, Insurance: Mathematics and Economics, 45 (2009), 382-392.
doi: 10.1016/j.insmatheco.2009.08.008.
|