April  2017, 13(2): 737-755. doi: 10.3934/jimo.2016044

Optimal reinsurance and investment strategy with two piece utility function

1. 

School of Statistics, East China Normal University, Shanghai, 200241, China

2. 

Departments of Statistics of Actuarial Science, The University of Hong Kong, Hong Kong, China

* Corresponding author: Lv Chen

Received  November 2015 Published  August 2016

Fund Project: The first author is supported by Research Grants Council of the Hong Kong Special Administrative Region (project No. HKU 705313P), National Natural Science Foundation of China (grant number 11231005,11571113), Program of Shanghai Subject Chief Scientist (grant number 14XD1401600).

This paper studies optimal reinsurance and investment strategies that maximize expected utility of the terminal wealth for an insurer in a stochastic market. The insurer's preference is represented by a two-piece utility function which can be regarded as a generalization of traditional concave utility functions. We employ martingale approach and convex optimization method to transform the dynamic maximization problem into an equivalent static optimization problem. By solving the optimization problem, we derive explicit expressions of the optimal reinsurance and investment strategy and the optimal wealth process.

Citation: Lv Chen, Hailiang Yang. Optimal reinsurance and investment strategy with two piece utility function. Journal of Industrial and Management Optimization, 2017, 13 (2) : 737-755. doi: 10.3934/jimo.2016044
References:
[1]

M. Alias, Le comportement de l'homme rationel devant le risque: Critique des postulats et axioms de l'ecole americaine, Econometrica, 21 (1953), 503-546.  doi: 10.2307/1907921.

[2]

D. E. Bell, Disappointment in decision making under uncertainty, Oper. Res., 33 (1985), 1-27.  doi: 10.1287/opre.33.1.1.

[3]

S. Benartzi and R. H. Thaler, Myopic loss aversion and the equity premium puzzle, Quart. J. Econ., 110 (1995), 73-92.  doi: 10.2307/2118511.

[4]

A, B. BerkelaarR. Kouwenberg and T. Post, Optimal Portfolio Choice under Loss Aversion, Review of Economics and Statistics, 86 (2004), 973-987. 

[5]

C. Bernard and M. Ghossoub, Static portfolio choice under cumulative prospect theory, Financ. Econ., 2 (2010), 277-306.  doi: 10.1007/s11579-009-0021-2.

[6]

S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Math. of Oper. Res., 20 (1995), 937-958.  doi: 10.1287/moor.20.4.937.

[7]

K. C. ChuengW. F. Chong and S. C. P. Yam, The optimal insurance under disappointment theories, Insurance Math. Econom., 64 (2015), 77-90.  doi: 10.1016/j.insmatheco.2015.04.004.

[8]

K. C. ChuengW. F. ChongR. J. Elliot and S. C. P. Yam, Disappointment aversion premium principle, Astin Bulletin, 45 (2015), 679-702.  doi: 10.1017/asb.2015.12.

[9]

W. J. Guo, Optimal portfolio choice for an insurer with loss aversion, Insurance Math. Econom., 58 (2014), 217-222.  doi: 10.1016/j.insmatheco.2014.07.004.

[10]

C. Hipp and M. Plum, Optimal investment for insurers, Insurance Math. Econom., 27 (2000), 215-228.  doi: 10.1016/S0167-6687(00)00049-4.

[11]

C. Hipp and M. Plum, Optimal investment for investors with state dependent income, and for insurers, Finance Stoch., 7 (2003), 299-321.  doi: 10.1007/s007800200095.

[12]

H. Jin and X. Y. Zhou, Behavior portfolio selection in continuous time, Math. Finance, 18 (2008), 385-426.  doi: 10.1111/j.1467-9965.2008.00339.x.

[13]

D. Kahneman and A. Tversky, Prospect Theory-Analysis of Decision under risk, Econometrica, 47 (1979), 263-291. 

[14]

I. Karatzas and S. E. Shreve, Methods of Mathematical Finance, Springer-Verlag, New York, 1998. doi: 10.1007/b98840.

[15]

C. S. Liu and H. Yang, Optimal investment for an insurer to minimize its probability of ruin, N. Am. Actuar. J., 8 (2004), 11-31.  doi: 10.1080/10920277.2004.10596134.

[16]

G. Loomes and R. Sugden, Disappointment and dynamic consistency in choice under uncertainty, Rev. Econom. Stud., 53 (1986), 271-282.  doi: 10.2307/2297651.

[17]

L. L. Lopes and G. C. Oden, The role of aspiration level in risky choice: A comparison of cumulative prospect theory and SP/A theory, J. Math. Psych, 43 (1999), 286-313.  doi: 10.1006/jmps.1999.1259.

[18]

R. Mehra and E. C. Prescott, The equity premium: A puzzle, J. Monetary Econ, 15 (1985), 145-161.  doi: 10.1016/0304-3932(85)90061-3.

[19]

H. Mi and S. G. Zhang, Continuous time portfolio selection with loss aversion in an incomplete market, Oper. Res Trans, 16 (2012), 1-12. 

[20]

H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting, Scand. Actuar. J., 1 (2001), 55-68.  doi: 10.1080/034612301750077338.

[21]

H. Shefrin and M. Statman, Behavioral portfolio theory, J. Financ. Quant. Anal., 35 (2000), 127-151.  doi: 10.2307/2676187.

[22]

K. C. J. SungS. C. P. YamS. P. Yung and J. H. Zhou, Behavioral optimal insurance, Insurance Math. Econom., 49 (2011), 418-428.  doi: 10.1016/j.insmatheco.2011.04.008.

[23]

A. Tsanakas and E. Desli, Risk measures and theories of choice, British Acturial Journal, 9 (2003), 959-991.  doi: 10.1017/S1357321700004414.

[24]

A. Tversky and D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty, Chapter: Readings in Formal Epistemology, 1 (2016), 493-519.  doi: 10.1007/978-3-319-20451-2_24.

[25]

L. XuR. Wang and D. Yao, On maximizing the expected terminal utility by investment and reinsurance, J. ind. manag. optim., 4 (2008), 801-815.  doi: 10.3934/jimo.2008.4.801.

[26]

H. Yang and L. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insurance Math. Econom., 37 (1995), 615-634.  doi: 10.1016/j.insmatheco.2005.06.009.

[27]

D. YaoH. Yang and R. Wang, Optimal financing and dividend strategies in a dual model with proportional costs, J. ind. manag. optim., 6 (2010), 761-777.  doi: 10.3934/jimo.2010.6.761.

[28]

X. Zhang and T. K. Siu, On optimal proportional reinsurance and investment in a markovian regime-switching economy, Acta Mathematica Sinica, English Series, 28 (2012), 67-82.  doi: 10.1007/s10114-012-9761-7.

show all references

References:
[1]

M. Alias, Le comportement de l'homme rationel devant le risque: Critique des postulats et axioms de l'ecole americaine, Econometrica, 21 (1953), 503-546.  doi: 10.2307/1907921.

[2]

D. E. Bell, Disappointment in decision making under uncertainty, Oper. Res., 33 (1985), 1-27.  doi: 10.1287/opre.33.1.1.

[3]

S. Benartzi and R. H. Thaler, Myopic loss aversion and the equity premium puzzle, Quart. J. Econ., 110 (1995), 73-92.  doi: 10.2307/2118511.

[4]

A, B. BerkelaarR. Kouwenberg and T. Post, Optimal Portfolio Choice under Loss Aversion, Review of Economics and Statistics, 86 (2004), 973-987. 

[5]

C. Bernard and M. Ghossoub, Static portfolio choice under cumulative prospect theory, Financ. Econ., 2 (2010), 277-306.  doi: 10.1007/s11579-009-0021-2.

[6]

S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Math. of Oper. Res., 20 (1995), 937-958.  doi: 10.1287/moor.20.4.937.

[7]

K. C. ChuengW. F. Chong and S. C. P. Yam, The optimal insurance under disappointment theories, Insurance Math. Econom., 64 (2015), 77-90.  doi: 10.1016/j.insmatheco.2015.04.004.

[8]

K. C. ChuengW. F. ChongR. J. Elliot and S. C. P. Yam, Disappointment aversion premium principle, Astin Bulletin, 45 (2015), 679-702.  doi: 10.1017/asb.2015.12.

[9]

W. J. Guo, Optimal portfolio choice for an insurer with loss aversion, Insurance Math. Econom., 58 (2014), 217-222.  doi: 10.1016/j.insmatheco.2014.07.004.

[10]

C. Hipp and M. Plum, Optimal investment for insurers, Insurance Math. Econom., 27 (2000), 215-228.  doi: 10.1016/S0167-6687(00)00049-4.

[11]

C. Hipp and M. Plum, Optimal investment for investors with state dependent income, and for insurers, Finance Stoch., 7 (2003), 299-321.  doi: 10.1007/s007800200095.

[12]

H. Jin and X. Y. Zhou, Behavior portfolio selection in continuous time, Math. Finance, 18 (2008), 385-426.  doi: 10.1111/j.1467-9965.2008.00339.x.

[13]

D. Kahneman and A. Tversky, Prospect Theory-Analysis of Decision under risk, Econometrica, 47 (1979), 263-291. 

[14]

I. Karatzas and S. E. Shreve, Methods of Mathematical Finance, Springer-Verlag, New York, 1998. doi: 10.1007/b98840.

[15]

C. S. Liu and H. Yang, Optimal investment for an insurer to minimize its probability of ruin, N. Am. Actuar. J., 8 (2004), 11-31.  doi: 10.1080/10920277.2004.10596134.

[16]

G. Loomes and R. Sugden, Disappointment and dynamic consistency in choice under uncertainty, Rev. Econom. Stud., 53 (1986), 271-282.  doi: 10.2307/2297651.

[17]

L. L. Lopes and G. C. Oden, The role of aspiration level in risky choice: A comparison of cumulative prospect theory and SP/A theory, J. Math. Psych, 43 (1999), 286-313.  doi: 10.1006/jmps.1999.1259.

[18]

R. Mehra and E. C. Prescott, The equity premium: A puzzle, J. Monetary Econ, 15 (1985), 145-161.  doi: 10.1016/0304-3932(85)90061-3.

[19]

H. Mi and S. G. Zhang, Continuous time portfolio selection with loss aversion in an incomplete market, Oper. Res Trans, 16 (2012), 1-12. 

[20]

H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting, Scand. Actuar. J., 1 (2001), 55-68.  doi: 10.1080/034612301750077338.

[21]

H. Shefrin and M. Statman, Behavioral portfolio theory, J. Financ. Quant. Anal., 35 (2000), 127-151.  doi: 10.2307/2676187.

[22]

K. C. J. SungS. C. P. YamS. P. Yung and J. H. Zhou, Behavioral optimal insurance, Insurance Math. Econom., 49 (2011), 418-428.  doi: 10.1016/j.insmatheco.2011.04.008.

[23]

A. Tsanakas and E. Desli, Risk measures and theories of choice, British Acturial Journal, 9 (2003), 959-991.  doi: 10.1017/S1357321700004414.

[24]

A. Tversky and D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty, Chapter: Readings in Formal Epistemology, 1 (2016), 493-519.  doi: 10.1007/978-3-319-20451-2_24.

[25]

L. XuR. Wang and D. Yao, On maximizing the expected terminal utility by investment and reinsurance, J. ind. manag. optim., 4 (2008), 801-815.  doi: 10.3934/jimo.2008.4.801.

[26]

H. Yang and L. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insurance Math. Econom., 37 (1995), 615-634.  doi: 10.1016/j.insmatheco.2005.06.009.

[27]

D. YaoH. Yang and R. Wang, Optimal financing and dividend strategies in a dual model with proportional costs, J. ind. manag. optim., 6 (2010), 761-777.  doi: 10.3934/jimo.2010.6.761.

[28]

X. Zhang and T. K. Siu, On optimal proportional reinsurance and investment in a markovian regime-switching economy, Acta Mathematica Sinica, English Series, 28 (2012), 67-82.  doi: 10.1007/s10114-012-9761-7.

[1]

Pengxu Xie, Lihua Bai, Huayue Zhang. Optimal proportional reinsurance and pairs trading under exponential utility criterion for the insurer. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022020

[2]

Xin Jiang, Kam Chuen Yuen, Mi Chen. Optimal investment and reinsurance with premium control. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2781-2797. doi: 10.3934/jimo.2019080

[3]

Lin Xu, Rongming Wang, Dingjun Yao. On maximizing the expected terminal utility by investment and reinsurance. Journal of Industrial and Management Optimization, 2008, 4 (4) : 801-815. doi: 10.3934/jimo.2008.4.801

[4]

Yan Zhang, Peibiao Zhao, Xinghu Teng, Lei Mao. Optimal reinsurance and investment strategies for an insurer and a reinsurer under Hestons SV model: HARA utility and Legendre transform. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2139-2159. doi: 10.3934/jimo.2020062

[5]

Yin Li, Xuerong Mao, Yazhi Song, Jian Tao. Optimal investment and proportional reinsurance strategy under the mean-reverting Ornstein-Uhlenbeck process and net profit condition. Journal of Industrial and Management Optimization, 2022, 18 (1) : 75-93. doi: 10.3934/jimo.2020143

[6]

Sheng Li, Wei Yuan, Peimin Chen. Optimal control on investment and reinsurance strategies with delay and common shock dependence in a jump-diffusion financial market. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022068

[7]

Nan Zhang, Linyi Qian, Zhuo Jin, Wei Wang. Optimal stop-loss reinsurance with joint utility constraints. Journal of Industrial and Management Optimization, 2021, 17 (2) : 841-868. doi: 10.3934/jimo.2020001

[8]

Jiapeng Liu, Ruihua Liu, Dan Ren. Investment and consumption in regime-switching models with proportional transaction costs and log utility. Mathematical Control and Related Fields, 2017, 7 (3) : 465-491. doi: 10.3934/mcrf.2017017

[9]

Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial and Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008

[10]

Yan Zhang, Peibiao Zhao. Optimal reinsurance-investment problem with dependent risks based on Legendre transform. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1457-1479. doi: 10.3934/jimo.2019011

[11]

Qian Zhao, Zhuo Jin, Jiaqin Wei. Optimal investment and dividend payment strategies with debt management and reinsurance. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1323-1348. doi: 10.3934/jimo.2018009

[12]

Xin Zhang, Hui Meng, Jie Xiong, Yang Shen. Robust optimal investment and reinsurance of an insurer under Jump-diffusion models. Mathematical Control and Related Fields, 2019, 9 (1) : 59-76. doi: 10.3934/mcrf.2019003

[13]

Xiaoyu Xing, Caixia Geng. Optimal investment-reinsurance strategy in the correlated insurance and financial markets. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021120

[14]

Xia Han, Zhibin Liang, Yu Yuan, Caibin Zhang. Optimal per-loss reinsurance and investment to minimize the probability of drawdown. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021145

[15]

Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial and Management Optimization, 2022, 18 (2) : 933-967. doi: 10.3934/jimo.2021003

[16]

Hiroaki Hata, Li-Hsien Sun. Optimal investment and reinsurance of insurers with lognormal stochastic factor model. Mathematical Control and Related Fields, 2022, 12 (2) : 531-566. doi: 10.3934/mcrf.2021033

[17]

Xiaoshan Chen, Xun Li, Fahuai Yi. Optimal stopping investment with non-smooth utility over an infinite time horizon. Journal of Industrial and Management Optimization, 2019, 15 (1) : 81-96. doi: 10.3934/jimo.2018033

[18]

Jingzhen Liu, Shiqi Yan, Shan Jiang, Jiaqin Wei. Optimal investment, consumption and life insurance strategies under stochastic differential utility with habit formation. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022040

[19]

Ming Yan, Hongtao Yang, Lei Zhang, Shuhua Zhang. Optimal investment-reinsurance policy with regime switching and value-at-risk constraint. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2195-2211. doi: 10.3934/jimo.2019050

[20]

Yan Zeng, Zhongfei Li. Optimal reinsurance-investment strategies for insurers under mean-CaR criteria. Journal of Industrial and Management Optimization, 2012, 8 (3) : 673-690. doi: 10.3934/jimo.2012.8.673

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (280)
  • HTML views (391)
  • Cited by (1)

Other articles
by authors

[Back to Top]