-
Previous Article
Hidden Markov models with threshold effects and their applications to oil price forecasting
- JIMO Home
- This Issue
-
Next Article
On a perturbed compound Poisson model with varying premium rates
Optimal reinsurance and investment strategy with two piece utility function
1. | School of Statistics, East China Normal University, Shanghai, 200241, China |
2. | Departments of Statistics of Actuarial Science, The University of Hong Kong, Hong Kong, China |
This paper studies optimal reinsurance and investment strategies that maximize expected utility of the terminal wealth for an insurer in a stochastic market. The insurer's preference is represented by a two-piece utility function which can be regarded as a generalization of traditional concave utility functions. We employ martingale approach and convex optimization method to transform the dynamic maximization problem into an equivalent static optimization problem. By solving the optimization problem, we derive explicit expressions of the optimal reinsurance and investment strategy and the optimal wealth process.
References:
[1] |
M. Alias,
Le comportement de l'homme rationel devant le risque: Critique des postulats et axioms de l'ecole americaine, Econometrica, 21 (1953), 503-546.
doi: 10.2307/1907921. |
[2] |
D. E. Bell,
Disappointment in decision making under uncertainty, Oper. Res., 33 (1985), 1-27.
doi: 10.1287/opre.33.1.1. |
[3] |
S. Benartzi and R. H. Thaler,
Myopic loss aversion and the equity premium puzzle, Quart. J. Econ., 110 (1995), 73-92.
doi: 10.2307/2118511. |
[4] |
A, B. Berkelaar, R. Kouwenberg and T. Post, Optimal Portfolio Choice under Loss Aversion, Review of Economics and Statistics, 86 (2004), 973-987. Google Scholar |
[5] |
C. Bernard and M. Ghossoub,
Static portfolio choice under cumulative prospect theory, Financ. Econ., 2 (2010), 277-306.
doi: 10.1007/s11579-009-0021-2. |
[6] |
S. Browne,
Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Math. of Oper. Res., 20 (1995), 937-958.
doi: 10.1287/moor.20.4.937. |
[7] |
K. C. Chueng, W. F. Chong and S. C. P. Yam,
The optimal insurance under disappointment theories, Insurance Math. Econom., 64 (2015), 77-90.
doi: 10.1016/j.insmatheco.2015.04.004. |
[8] |
K. C. Chueng, W. F. Chong, R. J. Elliot and S. C. P. Yam,
Disappointment aversion premium principle, Astin Bulletin, 45 (2015), 679-702.
doi: 10.1017/asb.2015.12. |
[9] |
W. J. Guo,
Optimal portfolio choice for an insurer with loss aversion, Insurance Math. Econom., 58 (2014), 217-222.
doi: 10.1016/j.insmatheco.2014.07.004. |
[10] |
C. Hipp and M. Plum,
Optimal investment for insurers, Insurance Math. Econom., 27 (2000), 215-228.
doi: 10.1016/S0167-6687(00)00049-4. |
[11] |
C. Hipp and M. Plum,
Optimal investment for investors with state dependent income, and for insurers, Finance Stoch., 7 (2003), 299-321.
doi: 10.1007/s007800200095. |
[12] |
H. Jin and X. Y. Zhou,
Behavior portfolio selection in continuous time, Math. Finance, 18 (2008), 385-426.
doi: 10.1111/j.1467-9965.2008.00339.x. |
[13] |
D. Kahneman and A. Tversky, Prospect Theory-Analysis of Decision under risk, Econometrica, 47 (1979), 263-291. Google Scholar |
[14] |
I. Karatzas and S. E. Shreve, Methods of Mathematical Finance, Springer-Verlag, New York, 1998.
doi: 10.1007/b98840. |
[15] |
C. S. Liu and H. Yang,
Optimal investment for an insurer to minimize its probability of ruin, N. Am. Actuar. J., 8 (2004), 11-31.
doi: 10.1080/10920277.2004.10596134. |
[16] |
G. Loomes and R. Sugden,
Disappointment and dynamic consistency in choice under uncertainty, Rev. Econom. Stud., 53 (1986), 271-282.
doi: 10.2307/2297651. |
[17] |
L. L. Lopes and G. C. Oden,
The role of aspiration level in risky choice: A comparison of cumulative prospect theory and SP/A theory, J. Math. Psych, 43 (1999), 286-313.
doi: 10.1006/jmps.1999.1259. |
[18] |
R. Mehra and E. C. Prescott,
The equity premium: A puzzle, J. Monetary Econ, 15 (1985), 145-161.
doi: 10.1016/0304-3932(85)90061-3. |
[19] |
H. Mi and S. G. Zhang,
Continuous time portfolio selection with loss aversion in an incomplete market, Oper. Res Trans, 16 (2012), 1-12.
|
[20] |
H. Schmidli,
Optimal proportional reinsurance policies in a dynamic setting, Scand. Actuar. J., 1 (2001), 55-68.
doi: 10.1080/034612301750077338. |
[21] |
H. Shefrin and M. Statman,
Behavioral portfolio theory, J. Financ. Quant. Anal., 35 (2000), 127-151.
doi: 10.2307/2676187. |
[22] |
K. C. J. Sung, S. C. P. Yam, S. P. Yung and J. H. Zhou,
Behavioral optimal insurance, Insurance Math. Econom., 49 (2011), 418-428.
doi: 10.1016/j.insmatheco.2011.04.008. |
[23] |
A. Tsanakas and E. Desli,
Risk measures and theories of choice, British Acturial Journal, 9 (2003), 959-991.
doi: 10.1017/S1357321700004414. |
[24] |
A. Tversky and D. Kahneman,
Advances in prospect theory: Cumulative representation of uncertainty, Chapter: Readings in Formal Epistemology, 1 (2016), 493-519.
doi: 10.1007/978-3-319-20451-2_24. |
[25] |
L. Xu, R. Wang and D. Yao,
On maximizing the expected terminal utility by investment and reinsurance, J. ind. manag. optim., 4 (2008), 801-815.
doi: 10.3934/jimo.2008.4.801. |
[26] |
H. Yang and L. Zhang,
Optimal investment for insurer with jump-diffusion risk process, Insurance Math. Econom., 37 (1995), 615-634.
doi: 10.1016/j.insmatheco.2005.06.009. |
[27] |
D. Yao, H. Yang and R. Wang,
Optimal financing and dividend strategies in a dual model with proportional costs, J. ind. manag. optim., 6 (2010), 761-777.
doi: 10.3934/jimo.2010.6.761. |
[28] |
X. Zhang and T. K. Siu,
On optimal proportional reinsurance and investment in a markovian regime-switching economy, Acta Mathematica Sinica, English Series, 28 (2012), 67-82.
doi: 10.1007/s10114-012-9761-7. |
show all references
References:
[1] |
M. Alias,
Le comportement de l'homme rationel devant le risque: Critique des postulats et axioms de l'ecole americaine, Econometrica, 21 (1953), 503-546.
doi: 10.2307/1907921. |
[2] |
D. E. Bell,
Disappointment in decision making under uncertainty, Oper. Res., 33 (1985), 1-27.
doi: 10.1287/opre.33.1.1. |
[3] |
S. Benartzi and R. H. Thaler,
Myopic loss aversion and the equity premium puzzle, Quart. J. Econ., 110 (1995), 73-92.
doi: 10.2307/2118511. |
[4] |
A, B. Berkelaar, R. Kouwenberg and T. Post, Optimal Portfolio Choice under Loss Aversion, Review of Economics and Statistics, 86 (2004), 973-987. Google Scholar |
[5] |
C. Bernard and M. Ghossoub,
Static portfolio choice under cumulative prospect theory, Financ. Econ., 2 (2010), 277-306.
doi: 10.1007/s11579-009-0021-2. |
[6] |
S. Browne,
Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Math. of Oper. Res., 20 (1995), 937-958.
doi: 10.1287/moor.20.4.937. |
[7] |
K. C. Chueng, W. F. Chong and S. C. P. Yam,
The optimal insurance under disappointment theories, Insurance Math. Econom., 64 (2015), 77-90.
doi: 10.1016/j.insmatheco.2015.04.004. |
[8] |
K. C. Chueng, W. F. Chong, R. J. Elliot and S. C. P. Yam,
Disappointment aversion premium principle, Astin Bulletin, 45 (2015), 679-702.
doi: 10.1017/asb.2015.12. |
[9] |
W. J. Guo,
Optimal portfolio choice for an insurer with loss aversion, Insurance Math. Econom., 58 (2014), 217-222.
doi: 10.1016/j.insmatheco.2014.07.004. |
[10] |
C. Hipp and M. Plum,
Optimal investment for insurers, Insurance Math. Econom., 27 (2000), 215-228.
doi: 10.1016/S0167-6687(00)00049-4. |
[11] |
C. Hipp and M. Plum,
Optimal investment for investors with state dependent income, and for insurers, Finance Stoch., 7 (2003), 299-321.
doi: 10.1007/s007800200095. |
[12] |
H. Jin and X. Y. Zhou,
Behavior portfolio selection in continuous time, Math. Finance, 18 (2008), 385-426.
doi: 10.1111/j.1467-9965.2008.00339.x. |
[13] |
D. Kahneman and A. Tversky, Prospect Theory-Analysis of Decision under risk, Econometrica, 47 (1979), 263-291. Google Scholar |
[14] |
I. Karatzas and S. E. Shreve, Methods of Mathematical Finance, Springer-Verlag, New York, 1998.
doi: 10.1007/b98840. |
[15] |
C. S. Liu and H. Yang,
Optimal investment for an insurer to minimize its probability of ruin, N. Am. Actuar. J., 8 (2004), 11-31.
doi: 10.1080/10920277.2004.10596134. |
[16] |
G. Loomes and R. Sugden,
Disappointment and dynamic consistency in choice under uncertainty, Rev. Econom. Stud., 53 (1986), 271-282.
doi: 10.2307/2297651. |
[17] |
L. L. Lopes and G. C. Oden,
The role of aspiration level in risky choice: A comparison of cumulative prospect theory and SP/A theory, J. Math. Psych, 43 (1999), 286-313.
doi: 10.1006/jmps.1999.1259. |
[18] |
R. Mehra and E. C. Prescott,
The equity premium: A puzzle, J. Monetary Econ, 15 (1985), 145-161.
doi: 10.1016/0304-3932(85)90061-3. |
[19] |
H. Mi and S. G. Zhang,
Continuous time portfolio selection with loss aversion in an incomplete market, Oper. Res Trans, 16 (2012), 1-12.
|
[20] |
H. Schmidli,
Optimal proportional reinsurance policies in a dynamic setting, Scand. Actuar. J., 1 (2001), 55-68.
doi: 10.1080/034612301750077338. |
[21] |
H. Shefrin and M. Statman,
Behavioral portfolio theory, J. Financ. Quant. Anal., 35 (2000), 127-151.
doi: 10.2307/2676187. |
[22] |
K. C. J. Sung, S. C. P. Yam, S. P. Yung and J. H. Zhou,
Behavioral optimal insurance, Insurance Math. Econom., 49 (2011), 418-428.
doi: 10.1016/j.insmatheco.2011.04.008. |
[23] |
A. Tsanakas and E. Desli,
Risk measures and theories of choice, British Acturial Journal, 9 (2003), 959-991.
doi: 10.1017/S1357321700004414. |
[24] |
A. Tversky and D. Kahneman,
Advances in prospect theory: Cumulative representation of uncertainty, Chapter: Readings in Formal Epistemology, 1 (2016), 493-519.
doi: 10.1007/978-3-319-20451-2_24. |
[25] |
L. Xu, R. Wang and D. Yao,
On maximizing the expected terminal utility by investment and reinsurance, J. ind. manag. optim., 4 (2008), 801-815.
doi: 10.3934/jimo.2008.4.801. |
[26] |
H. Yang and L. Zhang,
Optimal investment for insurer with jump-diffusion risk process, Insurance Math. Econom., 37 (1995), 615-634.
doi: 10.1016/j.insmatheco.2005.06.009. |
[27] |
D. Yao, H. Yang and R. Wang,
Optimal financing and dividend strategies in a dual model with proportional costs, J. ind. manag. optim., 6 (2010), 761-777.
doi: 10.3934/jimo.2010.6.761. |
[28] |
X. Zhang and T. K. Siu,
On optimal proportional reinsurance and investment in a markovian regime-switching economy, Acta Mathematica Sinica, English Series, 28 (2012), 67-82.
doi: 10.1007/s10114-012-9761-7. |
[1] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[2] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[3] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[4] |
Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021007 |
[5] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[6] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[7] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[8] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
[9] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[10] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[11] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[12] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[13] |
Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021004 |
[14] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[15] |
Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018 |
[16] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[17] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[18] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[19] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[20] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]