• Previous Article
    Some characterizations of robust optimal solutions for uncertain fractional optimization and applications
  • JIMO Home
  • This Issue
  • Next Article
    Hidden Markov models with threshold effects and their applications to oil price forecasting
April  2017, 13(2): 775-801. doi: 10.3934/jimo.2016046

Auction and contracting mechanisms for channel coordination with consideration of participants' risk attitudes

1. 

College of Business, Qingdao University, Qingdao, Shandong, China

2. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China

* Corresponding author: Y.C.E. Lee

Received  July 2014 Revised  June 2016 Published  August 2016

Fund Project: This research was supported by the Research Committee of The Hong Kong Polytechnic University, the National Natural Science Foundation of China (No.11401331), China Postdoctoral Foundation (No.2016M592148) and the Foundation for Guide Scientific and Technological Achievements of Qingdao (No. 14-2-4-57-jch).

This paper considers a two-supplier one-retailer coordinated supply chain system with auction and contracting mechanism incorporating participants' risk attitudes. The risk attitude is quantified using the value-at-risk (VaR) measure and the retailer faces a stochastic linear price-dependent demand function. In the supply chain, the suppliers (providing identical products) compete with each other in order to win the ordering contract of the retailer. Several auction and contracting mechanisms are developed and compared. It can be analytically shown that the retail price of the risk-averse system is higher than that of the risk-neutral system, but the order quantity is lower than that of the risk-neutral system.

Citation: Cheng Ma, Y. C. E. Lee, Chi Kin Chan, Yan Wei. Auction and contracting mechanisms for channel coordination with consideration of participants' risk attitudes. Journal of Industrial and Management Optimization, 2017, 13 (2) : 775-801. doi: 10.3934/jimo.2016046
References:
[1]

F. Branco, The design of multidimensional auctions, The RAND Journal of Economics, 28 (1997), 63-81. 

[2]

G. P. Cachon, Supply chain coordination with contracts, Handbooks in Operations Research and Management Science, 11 (2003), 227-339.  doi: 10.1016/S0927-0507(03)11006-7.

[3]

Y.-K. Che, Design competition through multidimensional auctions, The RAND Journal of Economics, 24 (1993), 668-680. 

[4]

J. ChenJ. Feng and A. B. Whinston, Keyword auctions, unit-price contracts, and the role of commitment, Production and Operations Management, 19 (2010), 305-321. 

[5]

K. Chen, Procurement strategies and coordination mechanism of the supply chain with one manufacturer and multiple suppliers, International Journal of Production Economics, 138 (2012), 125-135.  doi: 10.1016/j.ijpe.2012.03.009.

[6]

Y.-J. ChenS. Seshadri and E. Zemel, Sourcing through auctions and audits, Production and Operations Management, 17 (2008), 121-138.  doi: 10.3401/poms.1080.0018.

[7]

Y.-J. Chen and G. Vulcano, Effects of information disclosure under first-and second-price auctions in a supply chain setting, Manufacturing & Service Operations Management, 11 (2008), 299-316.  doi: 10.1287/msom.1080.0220.

[8]

C. J. Corbett, Stochastic inventory systems in a supply chain with asymmetric information: Cycle stocks, safety stocks, and consignment stock, Operations Research, 49 (2001), 487-500.  doi: 10.1287/opre.49.4.487.11223.

[9]

C. J. Corbett and X. De Groote, A supplier's optimal quantity discount policy under asymmetric information, Management Science, 46 (2000), 444-450.  doi: 10.1287/mnsc.46.3.444.12065.

[10]

C. J. Corbett and C. S. Tang, Designing supply contracts: Contract type and information asymmetry, Quantitative Models for Supply Chain Management, 17 (1999), 269-297.  doi: 10.1007/978-1-4615-4949-9_9.

[11]

W. Elmaghraby and P. Keskinocak, Combinatorial auctions in procurement, The Practice of Supply Chain Management: Where Theory and Application Converge, 62 (2004), 245-258.  doi: 10.1007/0-387-27275-5_15.

[12]

X. GanS. P. Sethi and H. Yan, Coordination of supply chains with risk-averse agents, Production and Operations Management, 13 (2004), 135-149. 

[13]

X. GanS. P. Sethi and H. Yan, Channel coordination with a risk-neutral supplier and a downside-risk-averse retailer, Production and Operations Management, 14 (2005), 80-89. 

[14]

J. S. Gans and S. P. King, Exclusionary contracts and competition for large buyers, International Journal of Industrial Organization, 20 (2002), 1363-1381.  doi: 10.1016/S0167-7187(02)00008-5.

[15]

S. GuptaC. Koulamas and G. J. Kyparisis, E-business: A review of research published in production and operations management (1992–2008), Production and Operations Management, 18 (2009), 604-620. 

[16]

A. Y. Ha, Supplier-buyer contracting: Asymmetric cost information and cutoff level policy for buyer participation, Naval Research Logistics, 48 (2001), 41-64.  doi: 10.1002/1520-6750(200102)48:1<41::AID-NAV3>3.0.CO;2-M.

[17]

G. Iyengar and A. Kumar, Optimal procurement mechanisms for divisible goods with capacitated suppliers, Review of Economic Design, 12 (2008), 129-154.  doi: 10.1007/s10058-008-0046-7.

[18]

M. Jin and S. D. Wu, Supply chain coordination in electronic markets: Auction and contracting mechanisms, in E-Commerce Research Forum, December, 2001.

[19]

V. Krishna, Auction Theory, Academic press, New York, 2009.

[20]

A. H. L. LauH.-S. Lau and J.-C. Wang, How a dominant retailer might design a purchase contract for a newsvendor-type product with price-sensitive demand, European Journal of Operational Research, 190 (2008), 443-458.  doi: 10.1016/j.ejor.2007.06.042.

[21]

C. Li and A. Scheller-Wolf, Push or pull? auctioning supply contracts, Production and Operations Management, 20 (2011), 198-213. 

[22]

F. Mathewson and R. A. Winter, Buyer groups, International Journal of Industrial Organization, 15 (1997), 137-164.  doi: 10.1016/0167-7187(95)00517-X.

[23]

D. C. Parkes and J. Kalagnanam, Models for iterative multiattribute procurement auctions, Management Science, 51 (2005), 435-451.  doi: 10.1287/mnsc.1040.0340.

[24]

K. Shi and T. Xiao, Coordination of a supply chain with a loss-averse retailer under two types of contracts, International Journal of Information and Decision Sciences, 1 (2008), 5-25.  doi: 10.1504/IJIDS.2008.020033.

[25]

The Organization for Economic Development (OECD) Background Report In: OECD conference on empowering E-consumers, Washington, 2009. Available from: http://www.oecd.org/dataoecd/44/13/44047583.pdf.

[26]

T. I. Tunca and Q. Wu, Multiple sourcing and procurement process selection with bidding events, Management Science, 55 (2009), 763-780.  doi: 10.1287/mnsc.1080.0972.

[27]

United States Securities and Exchange Commission (SEC) Form 10-K (eBay Inc: ), 2009. Available from: http://investor.ebay.com/secfiling.cfm?filingID=950134-09-3306.

[28]

G. Van Ryzin and G. Vulcano, Optimal auctioning and ordering in an infinite horizon inventory-pricing system, Operations Research, 52 (2004), 346-367.  doi: 10.1287/opre.1040.0105.

[29]

L. ZhangS. Song and C. Wu, Supply chain coordination of loss-averse newsvendor with contract, Tsinghua Science & Technology, 10 (2005), 133-140.  doi: 10.1016/S1007-0214(05)70044-4.

show all references

References:
[1]

F. Branco, The design of multidimensional auctions, The RAND Journal of Economics, 28 (1997), 63-81. 

[2]

G. P. Cachon, Supply chain coordination with contracts, Handbooks in Operations Research and Management Science, 11 (2003), 227-339.  doi: 10.1016/S0927-0507(03)11006-7.

[3]

Y.-K. Che, Design competition through multidimensional auctions, The RAND Journal of Economics, 24 (1993), 668-680. 

[4]

J. ChenJ. Feng and A. B. Whinston, Keyword auctions, unit-price contracts, and the role of commitment, Production and Operations Management, 19 (2010), 305-321. 

[5]

K. Chen, Procurement strategies and coordination mechanism of the supply chain with one manufacturer and multiple suppliers, International Journal of Production Economics, 138 (2012), 125-135.  doi: 10.1016/j.ijpe.2012.03.009.

[6]

Y.-J. ChenS. Seshadri and E. Zemel, Sourcing through auctions and audits, Production and Operations Management, 17 (2008), 121-138.  doi: 10.3401/poms.1080.0018.

[7]

Y.-J. Chen and G. Vulcano, Effects of information disclosure under first-and second-price auctions in a supply chain setting, Manufacturing & Service Operations Management, 11 (2008), 299-316.  doi: 10.1287/msom.1080.0220.

[8]

C. J. Corbett, Stochastic inventory systems in a supply chain with asymmetric information: Cycle stocks, safety stocks, and consignment stock, Operations Research, 49 (2001), 487-500.  doi: 10.1287/opre.49.4.487.11223.

[9]

C. J. Corbett and X. De Groote, A supplier's optimal quantity discount policy under asymmetric information, Management Science, 46 (2000), 444-450.  doi: 10.1287/mnsc.46.3.444.12065.

[10]

C. J. Corbett and C. S. Tang, Designing supply contracts: Contract type and information asymmetry, Quantitative Models for Supply Chain Management, 17 (1999), 269-297.  doi: 10.1007/978-1-4615-4949-9_9.

[11]

W. Elmaghraby and P. Keskinocak, Combinatorial auctions in procurement, The Practice of Supply Chain Management: Where Theory and Application Converge, 62 (2004), 245-258.  doi: 10.1007/0-387-27275-5_15.

[12]

X. GanS. P. Sethi and H. Yan, Coordination of supply chains with risk-averse agents, Production and Operations Management, 13 (2004), 135-149. 

[13]

X. GanS. P. Sethi and H. Yan, Channel coordination with a risk-neutral supplier and a downside-risk-averse retailer, Production and Operations Management, 14 (2005), 80-89. 

[14]

J. S. Gans and S. P. King, Exclusionary contracts and competition for large buyers, International Journal of Industrial Organization, 20 (2002), 1363-1381.  doi: 10.1016/S0167-7187(02)00008-5.

[15]

S. GuptaC. Koulamas and G. J. Kyparisis, E-business: A review of research published in production and operations management (1992–2008), Production and Operations Management, 18 (2009), 604-620. 

[16]

A. Y. Ha, Supplier-buyer contracting: Asymmetric cost information and cutoff level policy for buyer participation, Naval Research Logistics, 48 (2001), 41-64.  doi: 10.1002/1520-6750(200102)48:1<41::AID-NAV3>3.0.CO;2-M.

[17]

G. Iyengar and A. Kumar, Optimal procurement mechanisms for divisible goods with capacitated suppliers, Review of Economic Design, 12 (2008), 129-154.  doi: 10.1007/s10058-008-0046-7.

[18]

M. Jin and S. D. Wu, Supply chain coordination in electronic markets: Auction and contracting mechanisms, in E-Commerce Research Forum, December, 2001.

[19]

V. Krishna, Auction Theory, Academic press, New York, 2009.

[20]

A. H. L. LauH.-S. Lau and J.-C. Wang, How a dominant retailer might design a purchase contract for a newsvendor-type product with price-sensitive demand, European Journal of Operational Research, 190 (2008), 443-458.  doi: 10.1016/j.ejor.2007.06.042.

[21]

C. Li and A. Scheller-Wolf, Push or pull? auctioning supply contracts, Production and Operations Management, 20 (2011), 198-213. 

[22]

F. Mathewson and R. A. Winter, Buyer groups, International Journal of Industrial Organization, 15 (1997), 137-164.  doi: 10.1016/0167-7187(95)00517-X.

[23]

D. C. Parkes and J. Kalagnanam, Models for iterative multiattribute procurement auctions, Management Science, 51 (2005), 435-451.  doi: 10.1287/mnsc.1040.0340.

[24]

K. Shi and T. Xiao, Coordination of a supply chain with a loss-averse retailer under two types of contracts, International Journal of Information and Decision Sciences, 1 (2008), 5-25.  doi: 10.1504/IJIDS.2008.020033.

[25]

The Organization for Economic Development (OECD) Background Report In: OECD conference on empowering E-consumers, Washington, 2009. Available from: http://www.oecd.org/dataoecd/44/13/44047583.pdf.

[26]

T. I. Tunca and Q. Wu, Multiple sourcing and procurement process selection with bidding events, Management Science, 55 (2009), 763-780.  doi: 10.1287/mnsc.1080.0972.

[27]

United States Securities and Exchange Commission (SEC) Form 10-K (eBay Inc: ), 2009. Available from: http://investor.ebay.com/secfiling.cfm?filingID=950134-09-3306.

[28]

G. Van Ryzin and G. Vulcano, Optimal auctioning and ordering in an infinite horizon inventory-pricing system, Operations Research, 52 (2004), 346-367.  doi: 10.1287/opre.1040.0105.

[29]

L. ZhangS. Song and C. Wu, Supply chain coordination of loss-averse newsvendor with contract, Tsinghua Science & Technology, 10 (2005), 133-140.  doi: 10.1016/S1007-0214(05)70044-4.

Table 1.  Comparison of the optimal ordering quantities and optimal retail prices obtained under the complete information and asymmetric information situations
Demand Disturbance $\thicksim$ Exponential Demand Disturbance $\thicksim$ Normal
Complete Information Asymmetric Information Complete Information Asymmetric Information
$\alpha$ $s_1$ $q_{1,\alpha}^\star$ $r_{1,\alpha}^\star$ $\bar{q}_{1,\alpha}^\star$ $\bar{r}_{1,\alpha}^\star$ $q_{2,\alpha}^\star$ $r_{2,\alpha}^\star$ $\ \bar{q}_{2,\alpha}^\star$ $\bar{r}_{2,\alpha}^\star$
0.1 10 23.15 19.79 16.47 21.46 24.64 20.16 17.94 21.83
15 13.15 22.29 14.64 22.26
0.05 10 23.50 19.87 16.82 21.54 24.82 20.21 18.14 21.88
15 13.50 22.37 14.82 22.71
0.01 10 24.30 20.08 17.62 21.75 25.17 20.29 18.49 21.96
15 14.30 22.58 15.17 22.79
Demand Disturbance $\thicksim$ Exponential Demand Disturbance $\thicksim$ Normal
Complete Information Asymmetric Information Complete Information Asymmetric Information
$\alpha$ $s_1$ $q_{1,\alpha}^\star$ $r_{1,\alpha}^\star$ $\bar{q}_{1,\alpha}^\star$ $\bar{r}_{1,\alpha}^\star$ $q_{2,\alpha}^\star$ $r_{2,\alpha}^\star$ $\ \bar{q}_{2,\alpha}^\star$ $\bar{r}_{2,\alpha}^\star$
0.1 10 23.15 19.79 16.47 21.46 24.64 20.16 17.94 21.83
15 13.15 22.29 14.64 22.26
0.05 10 23.50 19.87 16.82 21.54 24.82 20.21 18.14 21.88
15 13.50 22.37 14.82 22.71
0.01 10 24.30 20.08 17.62 21.75 25.17 20.29 18.49 21.96
15 14.30 22.58 15.17 22.79
Table 2.  Comparison of the performance of the simple model with the two-part contract model when the demand disturbance follows an exponential distribution
Coordinated Policy Independent Policy Two-Part Contract
$\alpha$ $s_1$ $\Pi_{1,r,\alpha}^\star$ $\Pi_{1,s_1,\alpha}^\star$ $\Pi_{1,SC,\alpha}^\star$ $\Pi_{1,r,\alpha}^\star$ $\Pi_{1,s_1,\alpha}^\star$ $\Pi_{1,SC,\alpha}^\star$ $\Pi_{1,r,\alpha}^\star$ $\Pi_{1,s_1,\alpha}^\star$ $\Pi_{1,SC,\alpha}^\star$
0.1 13 134.00 0.00 134.00 33.50 67.00 100.50 73.54 60.46 134.00
15 43.24 90.76
17 20.94 113.06
0.05 13 138.04 0.00 138.04 34.51 69.02 103.53 76.54 61.50 138.04
15 45.55 92.49
17 22.55 115.49
0.01 13 147.65 0.00 147.65 36.91 73.83 110.74 83.75 63.90 147.65
15 51.14 96.51
17 26.54 121.11
Coordinated Policy Independent Policy Two-Part Contract
$\alpha$ $s_1$ $\Pi_{1,r,\alpha}^\star$ $\Pi_{1,s_1,\alpha}^\star$ $\Pi_{1,SC,\alpha}^\star$ $\Pi_{1,r,\alpha}^\star$ $\Pi_{1,s_1,\alpha}^\star$ $\Pi_{1,SC,\alpha}^\star$ $\Pi_{1,r,\alpha}^\star$ $\Pi_{1,s_1,\alpha}^\star$ $\Pi_{1,SC,\alpha}^\star$
0.1 13 134.00 0.00 134.00 33.50 67.00 100.50 73.54 60.46 134.00
15 43.24 90.76
17 20.94 113.06
0.05 13 138.04 0.00 138.04 34.51 69.02 103.53 76.54 61.50 138.04
15 45.55 92.49
17 22.55 115.49
0.01 13 147.65 0.00 147.65 36.91 73.83 110.74 83.75 63.90 147.65
15 51.14 96.51
17 26.54 121.11
Table 3.  Comparison of the performance of the simple model with the two-part contract model when the demand disturbance follows a normal distribution
Coordinated Policy Independent Policy Two-Part Contract
$\alpha$ $s_1$ $\Pi_{1,r,\alpha}^\star$ $\Pi_{1,s_1,\alpha}^\star$ $\Pi_{1,SC,\alpha}^\star$ $\Pi_{1,r,\alpha}^\star$ $\Pi_{1,s_1,\alpha}^\star$ $\Pi_{1,SC,\alpha}^\star$ $\Pi_{1,r,\alpha}^\star$ $\Pi_{1,s_1,\alpha}^\star$ $\Pi_{1,SC,\alpha}^\star$
0.1 13 151.78 0.00 151.78 37.95 75.89 113.84 86.86 64.92 151.78
15 53.58 98.20
17 28.30 123.48
0.05 13 154.04 0.00 154.04 38.51 77.02 115.53 88.57 65.47 154.04
15 54.93 99.11
17 29.28 124.76
0.01 13 158.32 0.00 158.32 39.58 79.16 118.74 91.82 66.50 158.32
15 57.49 100.83
17 31.16 127.16
Coordinated Policy Independent Policy Two-Part Contract
$\alpha$ $s_1$ $\Pi_{1,r,\alpha}^\star$ $\Pi_{1,s_1,\alpha}^\star$ $\Pi_{1,SC,\alpha}^\star$ $\Pi_{1,r,\alpha}^\star$ $\Pi_{1,s_1,\alpha}^\star$ $\Pi_{1,SC,\alpha}^\star$ $\Pi_{1,r,\alpha}^\star$ $\Pi_{1,s_1,\alpha}^\star$ $\Pi_{1,SC,\alpha}^\star$
0.1 13 151.78 0.00 151.78 37.95 75.89 113.84 86.86 64.92 151.78
15 53.58 98.20
17 28.30 123.48
0.05 13 154.04 0.00 154.04 38.51 77.02 115.53 88.57 65.47 154.04
15 54.93 99.11
17 29.28 124.76
0.01 13 158.32 0.00 158.32 39.58 79.16 118.74 91.82 66.50 158.32
15 57.49 100.83
17 31.16 127.16
Table 4.  Comparison of the optimal ordering quantity and the optimal retail price of a risk-averse and a risk neutral supply chain
Demand Disturbance $\thicksim$ Exponential Demand Disturbance $\thicksim$ Normal
Risk Averse Risk Neutral Risk Averse Risk Neutral
$\alpha$ $q_{1,\alpha}^\star$ $r_{1,\alpha}^\star$ $q_{1,N}^\star$ $r_{1,N}^\star$ $SL(r_{1,N}^\star)$ $q_{2,\alpha}^\star$ $r_{2,\alpha}^\star$ $q_{2,N}^\star$ $r_{2,N}^\star$ $SL(r_{2,N}^\star)$
0.1 5.88 12.85 6.62 11.45 0.91 7.37 15.83 8.17 14.52 0.92
0.05 6.22 13.55 7.55 16.19
0.01 7.03 15.16 7.89 16.88
Demand Disturbance $\thicksim$ Exponential Demand Disturbance $\thicksim$ Normal
Risk Averse Risk Neutral Risk Averse Risk Neutral
$\alpha$ $q_{1,\alpha}^\star$ $r_{1,\alpha}^\star$ $q_{1,N}^\star$ $r_{1,N}^\star$ $SL(r_{1,N}^\star)$ $q_{2,\alpha}^\star$ $r_{2,\alpha}^\star$ $q_{2,N}^\star$ $r_{2,N}^\star$ $SL(r_{2,N}^\star)$
0.1 5.88 12.85 6.62 11.45 0.91 7.37 15.83 8.17 14.52 0.92
0.05 6.22 13.55 7.55 16.19
0.01 7.03 15.16 7.89 16.88
[1]

Han Zhao, Bangdong Sun, Hui Wang, Shiji Song, Yuli Zhang, Liejun Wang. Optimization and coordination in a service-constrained supply chain with the bidirectional option contract under conditional value-at-risk. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022021

[2]

Tinghai Ren, Kaifu Yuan, Dafei Wang, Nengmin Zeng. Effect of service quality on software sales and coordination mechanism in IT service supply chain. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021165

[3]

Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial and Management Optimization, 2022, 18 (2) : 713-730. doi: 10.3934/jimo.2020175

[4]

Yang Yang, Guanxin Yao. Fresh agricultural products supply chain coordination considering consumers' dual preferences under carbon cap-and-trade mechanism. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022032

[5]

Feimin Zhong, Wei Zeng, Zhongbao Zhou. Mechanism design in a supply chain with ambiguity in private information. Journal of Industrial and Management Optimization, 2020, 16 (1) : 261-287. doi: 10.3934/jimo.2018151

[6]

Jing Feng, Yanfei Lan, Ruiqing Zhao. Impact of price cap regulation on supply chain contracting between two monopolists. Journal of Industrial and Management Optimization, 2017, 13 (1) : 349-373. doi: 10.3934/jimo.2016021

[7]

Tinggui Chen, Yanhui Jiang. Research on operating mechanism for creative products supply chain based on game theory. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1103-1112. doi: 10.3934/dcdss.2015.8.1103

[8]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effect of disruption risk on a supply chain with price-dependent demand. Journal of Industrial and Management Optimization, 2020, 16 (6) : 3083-3103. doi: 10.3934/jimo.2019095

[9]

K. F. Cedric Yiu, S. Y. Wang, K. L. Mak. Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains. Journal of Industrial and Management Optimization, 2008, 4 (1) : 81-94. doi: 10.3934/jimo.2008.4.81

[10]

Zhi-tang Li, Cui-hua Zhang, Wei Kong, Ru-xia Lyu. The optimal product-line design and incentive mechanism in a supply chain with customer environmental awareness. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021204

[11]

Xumei Zhang, Jiafeng Yuan, Bin Dan, Ronghua Sui, Wenbo Li. The evolution mechanism of the multi-value chain network ecosystem supported by the third-party platform. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021148

[12]

Dingzhong Feng, Xiaofeng Zhang, Ye Zhang. Collection decisions and coordination in a closed-loop supply chain under recovery price and service competition. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021117

[13]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial and Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[14]

Bin Chen, Wenying Xie, Fuyou Huang, Juan He. Quality competition and coordination in a VMI supply chain with two risk-averse manufacturers. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2903-2924. doi: 10.3934/jimo.2020100

[15]

Kai Kang, Taotao Lu, Jing Zhang. Financing strategy selection and coordination considering risk aversion in a capital-constrained supply chain. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1737-1768. doi: 10.3934/jimo.2021042

[16]

Chuan Ding, Kaihong Wang, Shaoyong Lai. Channel coordination mechanism with retailers having fairness preference ---An improved quantity discount mechanism. Journal of Industrial and Management Optimization, 2013, 9 (4) : 967-982. doi: 10.3934/jimo.2013.9.967

[17]

Jian Chen, Lei Guan, Xiaoqiang Cai. Analysis on Buyers' cooperative strategy under group-buying price mechanism. Journal of Industrial and Management Optimization, 2013, 9 (2) : 291-304. doi: 10.3934/jimo.2013.9.291

[18]

Junling Han, Nengmin Wang, Zhengwen He, Bin Jiang. Optimal return and rebate mechanism based on demand sensitivity to reference price. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021087

[19]

Helmut Mausser, Oleksandr Romanko. CVaR proxies for minimizing scenario-based Value-at-Risk. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1109-1127. doi: 10.3934/jimo.2014.10.1109

[20]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (235)
  • HTML views (422)
  • Cited by (0)

Other articles
by authors

[Back to Top]