\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Auction and contracting mechanisms for channel coordination with consideration of participants' risk attitudes

  • * Corresponding author: Y.C.E. Lee

    * Corresponding author: Y.C.E. Lee 
This research was supported by the Research Committee of The Hong Kong Polytechnic University, the National Natural Science Foundation of China (No.11401331), China Postdoctoral Foundation (No.2016M592148) and the Foundation for Guide Scientific and Technological Achievements of Qingdao (No. 14-2-4-57-jch).
Abstract Full Text(HTML) Figure(0) / Table(4) Related Papers Cited by
  • This paper considers a two-supplier one-retailer coordinated supply chain system with auction and contracting mechanism incorporating participants' risk attitudes. The risk attitude is quantified using the value-at-risk (VaR) measure and the retailer faces a stochastic linear price-dependent demand function. In the supply chain, the suppliers (providing identical products) compete with each other in order to win the ordering contract of the retailer. Several auction and contracting mechanisms are developed and compared. It can be analytically shown that the retail price of the risk-averse system is higher than that of the risk-neutral system, but the order quantity is lower than that of the risk-neutral system.

    Mathematics Subject Classification: Primary: 91B26, 91B42; Secondary: 91B24.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Comparison of the optimal ordering quantities and optimal retail prices obtained under the complete information and asymmetric information situations

    Demand Disturbance $\thicksim$ Exponential Demand Disturbance $\thicksim$ Normal
    Complete Information Asymmetric Information Complete Information Asymmetric Information
    $\alpha$ $s_1$ $q_{1,\alpha}^\star$ $r_{1,\alpha}^\star$ $\bar{q}_{1,\alpha}^\star$ $\bar{r}_{1,\alpha}^\star$ $q_{2,\alpha}^\star$ $r_{2,\alpha}^\star$ $\ \bar{q}_{2,\alpha}^\star$ $\bar{r}_{2,\alpha}^\star$
    0.1 10 23.15 19.79 16.47 21.46 24.64 20.16 17.94 21.83
    15 13.15 22.29 14.64 22.26
    0.05 10 23.50 19.87 16.82 21.54 24.82 20.21 18.14 21.88
    15 13.50 22.37 14.82 22.71
    0.01 10 24.30 20.08 17.62 21.75 25.17 20.29 18.49 21.96
    15 14.30 22.58 15.17 22.79
     | Show Table
    DownLoad: CSV

    Table 2.  Comparison of the performance of the simple model with the two-part contract model when the demand disturbance follows an exponential distribution

    Coordinated Policy Independent Policy Two-Part Contract
    $\alpha$ $s_1$ $\Pi_{1,r,\alpha}^\star$ $\Pi_{1,s_1,\alpha}^\star$ $\Pi_{1,SC,\alpha}^\star$ $\Pi_{1,r,\alpha}^\star$ $\Pi_{1,s_1,\alpha}^\star$ $\Pi_{1,SC,\alpha}^\star$ $\Pi_{1,r,\alpha}^\star$ $\Pi_{1,s_1,\alpha}^\star$ $\Pi_{1,SC,\alpha}^\star$
    0.1 13 134.00 0.00 134.00 33.50 67.00 100.50 73.54 60.46 134.00
    15 43.24 90.76
    17 20.94 113.06
    0.05 13 138.04 0.00 138.04 34.51 69.02 103.53 76.54 61.50 138.04
    15 45.55 92.49
    17 22.55 115.49
    0.01 13 147.65 0.00 147.65 36.91 73.83 110.74 83.75 63.90 147.65
    15 51.14 96.51
    17 26.54 121.11
     | Show Table
    DownLoad: CSV

    Table 3.  Comparison of the performance of the simple model with the two-part contract model when the demand disturbance follows a normal distribution

    Coordinated Policy Independent Policy Two-Part Contract
    $\alpha$ $s_1$ $\Pi_{1,r,\alpha}^\star$ $\Pi_{1,s_1,\alpha}^\star$ $\Pi_{1,SC,\alpha}^\star$ $\Pi_{1,r,\alpha}^\star$ $\Pi_{1,s_1,\alpha}^\star$ $\Pi_{1,SC,\alpha}^\star$ $\Pi_{1,r,\alpha}^\star$ $\Pi_{1,s_1,\alpha}^\star$ $\Pi_{1,SC,\alpha}^\star$
    0.1 13 151.78 0.00 151.78 37.95 75.89 113.84 86.86 64.92 151.78
    15 53.58 98.20
    17 28.30 123.48
    0.05 13 154.04 0.00 154.04 38.51 77.02 115.53 88.57 65.47 154.04
    15 54.93 99.11
    17 29.28 124.76
    0.01 13 158.32 0.00 158.32 39.58 79.16 118.74 91.82 66.50 158.32
    15 57.49 100.83
    17 31.16 127.16
     | Show Table
    DownLoad: CSV

    Table 4.  Comparison of the optimal ordering quantity and the optimal retail price of a risk-averse and a risk neutral supply chain

    Demand Disturbance $\thicksim$ Exponential Demand Disturbance $\thicksim$ Normal
    Risk Averse Risk Neutral Risk Averse Risk Neutral
    $\alpha$ $q_{1,\alpha}^\star$ $r_{1,\alpha}^\star$ $q_{1,N}^\star$ $r_{1,N}^\star$ $SL(r_{1,N}^\star)$ $q_{2,\alpha}^\star$ $r_{2,\alpha}^\star$ $q_{2,N}^\star$ $r_{2,N}^\star$ $SL(r_{2,N}^\star)$
    0.1 5.88 12.85 6.62 11.45 0.91 7.37 15.83 8.17 14.52 0.92
    0.05 6.22 13.55 7.55 16.19
    0.01 7.03 15.16 7.89 16.88
     | Show Table
    DownLoad: CSV
  • [1] F. Branco, The design of multidimensional auctions, The RAND Journal of Economics, 28 (1997), 63-81. 
    [2] G. P. Cachon, Supply chain coordination with contracts, Handbooks in Operations Research and Management Science, 11 (2003), 227-339.  doi: 10.1016/S0927-0507(03)11006-7.
    [3] Y.-K. Che, Design competition through multidimensional auctions, The RAND Journal of Economics, 24 (1993), 668-680. 
    [4] J. ChenJ. Feng and A. B. Whinston, Keyword auctions, unit-price contracts, and the role of commitment, Production and Operations Management, 19 (2010), 305-321. 
    [5] K. Chen, Procurement strategies and coordination mechanism of the supply chain with one manufacturer and multiple suppliers, International Journal of Production Economics, 138 (2012), 125-135.  doi: 10.1016/j.ijpe.2012.03.009.
    [6] Y.-J. ChenS. Seshadri and E. Zemel, Sourcing through auctions and audits, Production and Operations Management, 17 (2008), 121-138.  doi: 10.3401/poms.1080.0018.
    [7] Y.-J. Chen and G. Vulcano, Effects of information disclosure under first-and second-price auctions in a supply chain setting, Manufacturing & Service Operations Management, 11 (2008), 299-316.  doi: 10.1287/msom.1080.0220.
    [8] C. J. Corbett, Stochastic inventory systems in a supply chain with asymmetric information: Cycle stocks, safety stocks, and consignment stock, Operations Research, 49 (2001), 487-500.  doi: 10.1287/opre.49.4.487.11223.
    [9] C. J. Corbett and X. De Groote, A supplier's optimal quantity discount policy under asymmetric information, Management Science, 46 (2000), 444-450.  doi: 10.1287/mnsc.46.3.444.12065.
    [10] C. J. Corbett and C. S. Tang, Designing supply contracts: Contract type and information asymmetry, Quantitative Models for Supply Chain Management, 17 (1999), 269-297.  doi: 10.1007/978-1-4615-4949-9_9.
    [11] W. Elmaghraby and P. Keskinocak, Combinatorial auctions in procurement, The Practice of Supply Chain Management: Where Theory and Application Converge, 62 (2004), 245-258.  doi: 10.1007/0-387-27275-5_15.
    [12] X. GanS. P. Sethi and H. Yan, Coordination of supply chains with risk-averse agents, Production and Operations Management, 13 (2004), 135-149. 
    [13] X. GanS. P. Sethi and H. Yan, Channel coordination with a risk-neutral supplier and a downside-risk-averse retailer, Production and Operations Management, 14 (2005), 80-89. 
    [14] J. S. Gans and S. P. King, Exclusionary contracts and competition for large buyers, International Journal of Industrial Organization, 20 (2002), 1363-1381.  doi: 10.1016/S0167-7187(02)00008-5.
    [15] S. GuptaC. Koulamas and G. J. Kyparisis, E-business: A review of research published in production and operations management (1992–2008), Production and Operations Management, 18 (2009), 604-620. 
    [16] A. Y. Ha, Supplier-buyer contracting: Asymmetric cost information and cutoff level policy for buyer participation, Naval Research Logistics, 48 (2001), 41-64.  doi: 10.1002/1520-6750(200102)48:1<41::AID-NAV3>3.0.CO;2-M.
    [17] G. Iyengar and A. Kumar, Optimal procurement mechanisms for divisible goods with capacitated suppliers, Review of Economic Design, 12 (2008), 129-154.  doi: 10.1007/s10058-008-0046-7.
    [18] M. Jin and S. D. Wu, Supply chain coordination in electronic markets: Auction and contracting mechanisms, in E-Commerce Research Forum, December, 2001.
    [19] V. Krishna, Auction Theory, Academic press, New York, 2009.
    [20] A. H. L. LauH.-S. Lau and J.-C. Wang, How a dominant retailer might design a purchase contract for a newsvendor-type product with price-sensitive demand, European Journal of Operational Research, 190 (2008), 443-458.  doi: 10.1016/j.ejor.2007.06.042.
    [21] C. Li and A. Scheller-Wolf, Push or pull? auctioning supply contracts, Production and Operations Management, 20 (2011), 198-213. 
    [22] F. Mathewson and R. A. Winter, Buyer groups, International Journal of Industrial Organization, 15 (1997), 137-164.  doi: 10.1016/0167-7187(95)00517-X.
    [23] D. C. Parkes and J. Kalagnanam, Models for iterative multiattribute procurement auctions, Management Science, 51 (2005), 435-451.  doi: 10.1287/mnsc.1040.0340.
    [24] K. Shi and T. Xiao, Coordination of a supply chain with a loss-averse retailer under two types of contracts, International Journal of Information and Decision Sciences, 1 (2008), 5-25.  doi: 10.1504/IJIDS.2008.020033.
    [25] The Organization for Economic Development (OECD) Background Report In: OECD conference on empowering E-consumers, Washington, 2009. Available from: http://www.oecd.org/dataoecd/44/13/44047583.pdf.
    [26] T. I. Tunca and Q. Wu, Multiple sourcing and procurement process selection with bidding events, Management Science, 55 (2009), 763-780.  doi: 10.1287/mnsc.1080.0972.
    [27] United States Securities and Exchange Commission (SEC) Form 10-K (eBay Inc: ), 2009. Available from: http://investor.ebay.com/secfiling.cfm?filingID=950134-09-3306.
    [28] G. Van Ryzin and G. Vulcano, Optimal auctioning and ordering in an infinite horizon inventory-pricing system, Operations Research, 52 (2004), 346-367.  doi: 10.1287/opre.1040.0105.
    [29] L. ZhangS. Song and C. Wu, Supply chain coordination of loss-averse newsvendor with contract, Tsinghua Science & Technology, 10 (2005), 133-140.  doi: 10.1016/S1007-0214(05)70044-4.
  • 加载中

Tables(4)

SHARE

Article Metrics

HTML views(695) PDF downloads(253) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return