[1]
|
V. Aksakalli and I. Ari, Penalty-based algorithms for the stochastic obstacle scene problem, INFORMS Journal on Computing, 26 (2014), 370-384.
doi: 10.1287/ijoc.2013.0571.
|
[2]
|
V. Aksakalli and E. Ceyhan, Optimal obstacle placement with disambiguations, Annals of Applied Statistics, 6 (2012), 1730-1774.
doi: 10.1214/12-AOAS556.
|
[3]
|
V. Aksakalli, D. Fishkind, C. E. Priebe and X. Ye, The reset disambiguation policy for navigating stochastic obstacle fields, Naval Research Logistics, 58 (2011), 389-399.
doi: 10.1002/nav.20454.
|
[4]
|
R. Algin, A. F. Alkaya, V. Aksakalli and D. Oz, 2013. An ant system algorithm for the
neutralization problem, Advances in Computational Intelligence, Volume 7903 of the series
Lecture Notes in Computer Science, (2013), 53–61.
doi: 10.1007/978-3-642-38682-4_7.
|
[5]
|
R. Algin and A. F. Alkaya, Solving the obstacle neutralization problem using swarm intelligence algorithms, Proceedings of 7th International Conference on Soft Computing and Pattern Recognition, (2015), 187-192.
doi: 10.1109/SOCPAR.2015.7492805.
|
[6]
|
A. F. Alkaya and R. Algin, Metaheuristic based solution approaches for the obstacle neutralization problem, Expert Systems with Applications, 42 (2015), 1094-1105.
doi: 10.1016/j.eswa.2014.09.027.
|
[7]
|
A. F. Alkaya, V. Aksakalli and C. E. Priebe, A penalty search algorithm for the obstacle neutralization problem, Computers and Operations Research, 53 (2015), 165-175.
doi: 10.1016/j.cor.2014.08.013.
|
[8]
|
J. F. Bekker and J. P. Schmid, Planning the safe transit of a ship through a mapped minefield, Journal of the Operations Research Society of South Africa, 22 (2006), 1-18.
doi: 10.5784/22-1-30.
|
[9]
|
W. M. Carlyle, J. O. Royset and R. K. Wood, Lagrangian relaxation and enumeration for solving constrained shortest-path problems, Networks, 52 (2008), 256-270.
doi: 10.1002/net.20247.
|
[10]
|
Costal Battlefied Reconnaissance and Analysis -(COBRA),
http://www.navy.mil/navydata/fact_display.asp?cid=2100&tid=1237&ct=2, Last access: September 1,2014.
|
[11]
|
G. Dahl and B. Realfsen,
Curve Approximation and Constrained Shortest Path Problems, International Symposium on Mathematical Programming (ISMP97), 1997.
|
[12]
|
G. Dahl and B. Realfsen, Curve approximation constrained shortest path problems, Networks, 36 (2000), 1-8.
doi: 10.1002/1097-0037(200008)36:1<1::AID-NET1>3.0.CO;2-B.
|
[13]
|
I. Dumitrescu and N. Boland, Algorithms for the weight constrained shortest path problem, International Transactions in Operational Research, 8 (2001), 15-29.
doi: 10.1111/1475-3995.00003.
|
[14]
|
D. E. Fishkind, C. E. Priebe, K. Giles, L. N. Smith and V. Aksakalli, Disambiguation protocols based on risk simulation, IEEE Transactions on Systems, Man, and Cybernetics, Part A, 37 (2007), 814-823.
doi: 10.1109/TSMCA.2007.902634.
|
[15]
|
L. Guo and I. Matta, Search space reduction in QoS routing, Computer Networks, 41 (2003), 73-88.
doi: 10.1016/S1389-1286(02)00344-4.
|
[16]
|
G. Y. Handler and I. Zang, A dual algorithm for the constrained shortest path problem, Networks, 10 (1980), 293-309.
doi: 10.1002/net.3230100403.
|
[17]
|
A. Jüittner, B. Szviatovski, I. Mecs and Z. Rajko, Lagrange relaxation based method for the QoS routing problem, Proceedings of 20th Annual Joint Conference of the IEEE Computer Communications Societies, 2 (2001), 859-868.
|
[18]
|
T. Koch,
Rapid Mathematical Prototyping, Ph. D. Thesis, Technische Universität Berlin, 2004.
|
[19]
|
F. Kuipers, T. Korkmaz, M. Krunz and P. Van Mieghemt, Performance evaluation of constraint-based path selection algorithms, IEEE Network, 18 (2004), 16-23.
doi: 10.1109/MNET.2004.1337731.
|
[20]
|
J. Latourell, B. Wallet and B. Copeland, Genetic algorithm to solve constrained routing problem with applications for cruise missile routing, Proceedings of SPIE, 3390 (1998), 490-500.
doi: 10.1117/12.304839.
|
[21]
|
S. H. K. Lee,
Route Optimization Model for Strike Aircraft, Master's thesis, Naval Postgraduate School, Monterey, California, 1995.
|
[22]
|
P. C. Li,
Planning the Optimal Transit for a Ship Through a Mapped Minefield, Master's thesis, Naval Postgraduate School, Monterey, California, 2009.
|
[23]
|
Y. M. Marghi, F. Towhidkhah and S. Gharibzadeh, A two level real-time path planning method inspired by cognitive map and predictive optimization in human brain, Applied Soft Computing, 21 (2014), 352-364.
doi: 10.1016/j.asoc.2014.03.038.
|
[24]
|
C. Mou, W. Qing-xian and J. Chang-sheng, A modified ant optimization algorithm for path planning of UCAV, Applied Soft Computing, 8 (2008), 1712-1718.
doi: 10.1016/j.asoc.2007.10.011.
|
[25]
|
R. Muhandiramge, N. Boland and S. Wang, Convergent network approximation for the continuous euclidean length constrained minimum cost path problem, SIAM journal on Optimization, 20 (2009), 54-77.
doi: 10.1137/070695356.
|
[26]
|
R. Nygaard, J. HusZy and D. Haugland, Compression of image contours using combinatorial optimization, Proceedings of the International Conference on Image Processing-ICIP98, 1 (1998), 266-270.
doi: 10.1109/ICIP.1998.723470.
|
[27]
|
C. E. Priebe, D. E. Fishkind, L. Abrams and C. D. Piatko, Random disambiguation paths for traversing a mapped hazard field, Naval Research Logistics, 52 (2005), 285-292.
doi: 10.1002/nav.20071.
|
[28]
|
C. E. Priebe, T. E. Olson and D. M. Healy Jr., Exploiting stochastic partitions for minefield detection, Proceedings of the SPIE, 3079 (1997), 508-518.
|
[29]
|
D. S. Reeves and H. F. Salama, A distributed algorithm for delay-constrained unicast routing, IEEE/ACM Transactions on Networking, 8 (2000), 239-250.
doi: 10.1109/90.842145.
|
[30]
|
J. O. Royset, W. M. Carlyle and R. K. Wood, Routing military aircraft with a constrained shortest-path algorithm, Military Operations Research, 14 (2009), 31-52.
|
[31]
|
N. H. Witherspoon, J. H. Holloway, K. S. Davis, R. W. Miller and A. C. Dubey, The coastal battlefield reconnaissance and analysis (cobra) program for minefield detection, Proceedings of the SPIE: Detection Technologies for Mines and Minelike Targets, Orlando, Florida, 2496 (1995), 500-508.
|
[32]
|
B. Yang, Y. Ding, Y. Jin and K. Haho, Self-organized swarm robot for target search and trapping inspired by bacterial chemotaxis, Robotics and Autonomous Systems, 72 (2015), 83-92.
doi: 10.1016/j.robot.2015.05.001.
|
[33]
|
X. Ye, D. E. Fishkind and C. E. Priebe, Sensor information monotonicity in disambiguation protocols, Journal of the Operational Research Society, 62 (2011), 142-151.
doi: 10.1057/jors.2009.152.
|
[34]
|
X. Ye and C. E. Priebe, A graph-search based navigation algorithm for traversing a potentially hazardous area with disambiguation, International Journal of Operations Research and Information Systems, 1 (2010), 14-27.
doi: 10.4018/978-1-4666-0933-4.ch007.
|
[35]
|
J. Y. Yen, Finding the k shortest loopless paths in a network, Management Science, 17 (1971), 712-716.
|
[36]
|
M. Zabarankin, S. Uryasev and R. Murphey, Aircraft routing under the risk of detection, Naval Research Logistics, 53 (2006), 728-747.
doi: 10.1002/nav.20165.
|
[37]
|
M. Zabarankin, S. Uryasev and P. Pardalos, Optimal risk path algorithms, Cooperative Control and Optimization (R. Murphey and P. Pardalos ed.), Kluwer Academic, Dordrecht, 66 (2002), 273-298.
doi: 10.1007/0-306-47536-7_13.
|
[38]
|
Q. Zhu, J. Hu, W. Cai and L. Henschen, A new robot navigation algorithm for dynamic unknown environments based on dynamic path re-computation and an improved scout ant algorithm, Applied Soft Computing, 11 (2011), 4667-4676.
doi: 10.1016/j.asoc.2011.07.016.
|