• Previous Article
    Effective heuristics for makespan minimization in parallel batch machines with non-identical capacities and job release times
  • JIMO Home
  • This Issue
  • Next Article
    An optimal trade-off model for portfolio selection with sensitivity of parameters
April  2017, 13(2): 967-975. doi: 10.3934/jimo.2016056

Continuity of the solution mappings to parametric generalized non-weak vector Ky Fan inequalities

a. 

College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

b. 

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

1Corresponding author

Received  December 2014 Revised  June 2016 Published  August 2016

In this paper, by using the nonlinear scalarization method and under some new assumptions, which do not involve any information on the solution set, we establish the continuity of solution mappings of parametric generalized non-weak vector Ky Fan inequality with moving cones. The results are new and improve corresponding ones in the literature. Some examples are given to illustrate our results.

Citation: Yangdong Xu, Shengjie Li. Continuity of the solution mappings to parametric generalized non-weak vector Ky Fan inequalities. Journal of Industrial & Management Optimization, 2017, 13 (2) : 967-975. doi: 10.3934/jimo.2016056
References:
[1]

L. Q. Anh and P. Q. Khanh, Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems, J. Math. Anal. Appl., 294 (2004), 699-711.  doi: 10.1016/j.jmaa.2004.03.014.  Google Scholar

[2]

L. Q. Anh and P. Q. Khanh, Continuity of solution maps of parametric quasiequilibrium problems, J. Global Optim., 46 (2010), 247-259.  doi: 10.1007/s10898-009-9422-2.  Google Scholar

[3]

J. -P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 2006.  Google Scholar

[4]

C. Berge, Topological Spaces, Oliver and Boy1, London, 1963, Dover Publications, Inc., Mineola, NY, 1997.  Google Scholar

[5]

B. Chen and N. J. Huang, Continuity of the solution mapping to parametric generalized vector equilibrium problems, J. Global Optim., 56 (2013), 1515-1528.  doi: 10.1007/s10898-012-9904-5.  Google Scholar

[6]

C. R. ChenS. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems, J. Global Optim., 45 (2009), 309-318.  doi: 10.1007/s10898-008-9376-9.  Google Scholar

[7]

G. Y. ChenX. Q. Yang and H. Yu, A nonlinear scalarization function and generalized quasi-vector equilibrium problems, J. Global Optim., 32 (2005), 451-466.  doi: 10.1007/s10898-003-2683-2.  Google Scholar

[8]

Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality, J. Global Optim., 32 (2005), 543-550.  doi: 10.1007/s10898-004-2692-9.  Google Scholar

[9]

K. Fan, Extension of two fixed point theorems of F.E., Browder, Math. Z., 112 (1969), 234-240.  doi: 10.1007/BF01110225.  Google Scholar

[10]

F. Ferro, A minimax theorem for vector-valued functions, J. Optim. Theory Appl., 60 (1989), 19-31.  doi: 10.1007/BF00938796.  Google Scholar

[11]

F. Giannessi, Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, Kluwer Academic Publishers, Dordrecht, 2000. doi: 10.1007/978-1-4613-0299-5.  Google Scholar

[12]

X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems, J. Optim. Theory Appl., 139 (2008), 35-46.  doi: 10.1007/s10957-008-9429-8.  Google Scholar

[13]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems, J. Optim. Theory Appl., 138 (2008), 197-205.  doi: 10.1007/s10957-008-9379-1.  Google Scholar

[14]

Y. Han and X. H. Gong, Lower semicontinuity of solution mapping to parametric generalized strong vector equilibrium problems, Appl. Math. Lett., 28 (2014), 38-41.  doi: 10.1016/j.aml.2013.09.006.  Google Scholar

[15]

N. J. HuangJ. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems, Math. Comput. Model., 43 (2006), 1267-1274.  doi: 10.1016/j.mcm.2005.06.010.  Google Scholar

[16]

S. J. LiG. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems, J. Optim. Theory Appl., 113 (2002), 283-295.  doi: 10.1023/A:1014830925232.  Google Scholar

[17]

S. J. Li and Z. M. Fang, Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality, J. Optim. Theory Appl., 147 (2010), 507-515.  doi: 10.1007/s10957-010-9736-8.  Google Scholar

[18]

S. J. LiH. M. Liu and C. R. Chen, Lower semicomtinuity of parametric generalized weak vector equilibrium problems, Bull. Aust. Math. Soc., 81 (2010), 85-95.  doi: 10.1017/S0004972709000628.  Google Scholar

[19]

Z. Y. Peng and S. S. Chang, On the lower semicontinuity of the set of efficient solutions to parametric generalized systems, Optim. Lett., 8 (2014), 159-169.  doi: 10.1007/s11590-012-0544-y.  Google Scholar

[20]

Z. Y. PengX. M. Yang and J. W. Peng, On the lower semicontinuity of the solution mappings to parametric weak generalized Ky Fan inequality, J. Optim. Theory Appl., 152 (2012), 256-264.  doi: 10.1007/s10957-011-9883-6.  Google Scholar

[21]

P. H. Sach, New nonlinear scalarization functions and applications, Nonlinear Anal., 75 (2012), 2281-2292.  doi: 10.1016/j.na.2011.10.028.  Google Scholar

[22]

P. H. Sach and N. B. Minh, Continuity of solution mappings in some parametric non-weak vector Ky Fan inequalities, J. Global Optim., 57 (2013), 1401-1418.  doi: 10.1007/s10898-012-0015-0.  Google Scholar

[23]

P. H. Sach and L. A. Tuan, New scalarizing approach to the stability analysis in parametric generalized Ky Fan inequality problems, J. Optim. Theory Appl., 157 (2013), 347-364.  doi: 10.1007/s10957-012-0105-7.  Google Scholar

[24]

Q. L. Wang and S. J. Li, Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem, J. Ind. Manag. Optim., 10 (2014), 1225-1234.  doi: 10.3934/jimo.2014.10.1225.  Google Scholar

show all references

References:
[1]

L. Q. Anh and P. Q. Khanh, Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems, J. Math. Anal. Appl., 294 (2004), 699-711.  doi: 10.1016/j.jmaa.2004.03.014.  Google Scholar

[2]

L. Q. Anh and P. Q. Khanh, Continuity of solution maps of parametric quasiequilibrium problems, J. Global Optim., 46 (2010), 247-259.  doi: 10.1007/s10898-009-9422-2.  Google Scholar

[3]

J. -P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 2006.  Google Scholar

[4]

C. Berge, Topological Spaces, Oliver and Boy1, London, 1963, Dover Publications, Inc., Mineola, NY, 1997.  Google Scholar

[5]

B. Chen and N. J. Huang, Continuity of the solution mapping to parametric generalized vector equilibrium problems, J. Global Optim., 56 (2013), 1515-1528.  doi: 10.1007/s10898-012-9904-5.  Google Scholar

[6]

C. R. ChenS. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems, J. Global Optim., 45 (2009), 309-318.  doi: 10.1007/s10898-008-9376-9.  Google Scholar

[7]

G. Y. ChenX. Q. Yang and H. Yu, A nonlinear scalarization function and generalized quasi-vector equilibrium problems, J. Global Optim., 32 (2005), 451-466.  doi: 10.1007/s10898-003-2683-2.  Google Scholar

[8]

Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality, J. Global Optim., 32 (2005), 543-550.  doi: 10.1007/s10898-004-2692-9.  Google Scholar

[9]

K. Fan, Extension of two fixed point theorems of F.E., Browder, Math. Z., 112 (1969), 234-240.  doi: 10.1007/BF01110225.  Google Scholar

[10]

F. Ferro, A minimax theorem for vector-valued functions, J. Optim. Theory Appl., 60 (1989), 19-31.  doi: 10.1007/BF00938796.  Google Scholar

[11]

F. Giannessi, Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, Kluwer Academic Publishers, Dordrecht, 2000. doi: 10.1007/978-1-4613-0299-5.  Google Scholar

[12]

X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems, J. Optim. Theory Appl., 139 (2008), 35-46.  doi: 10.1007/s10957-008-9429-8.  Google Scholar

[13]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems, J. Optim. Theory Appl., 138 (2008), 197-205.  doi: 10.1007/s10957-008-9379-1.  Google Scholar

[14]

Y. Han and X. H. Gong, Lower semicontinuity of solution mapping to parametric generalized strong vector equilibrium problems, Appl. Math. Lett., 28 (2014), 38-41.  doi: 10.1016/j.aml.2013.09.006.  Google Scholar

[15]

N. J. HuangJ. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems, Math. Comput. Model., 43 (2006), 1267-1274.  doi: 10.1016/j.mcm.2005.06.010.  Google Scholar

[16]

S. J. LiG. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems, J. Optim. Theory Appl., 113 (2002), 283-295.  doi: 10.1023/A:1014830925232.  Google Scholar

[17]

S. J. Li and Z. M. Fang, Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality, J. Optim. Theory Appl., 147 (2010), 507-515.  doi: 10.1007/s10957-010-9736-8.  Google Scholar

[18]

S. J. LiH. M. Liu and C. R. Chen, Lower semicomtinuity of parametric generalized weak vector equilibrium problems, Bull. Aust. Math. Soc., 81 (2010), 85-95.  doi: 10.1017/S0004972709000628.  Google Scholar

[19]

Z. Y. Peng and S. S. Chang, On the lower semicontinuity of the set of efficient solutions to parametric generalized systems, Optim. Lett., 8 (2014), 159-169.  doi: 10.1007/s11590-012-0544-y.  Google Scholar

[20]

Z. Y. PengX. M. Yang and J. W. Peng, On the lower semicontinuity of the solution mappings to parametric weak generalized Ky Fan inequality, J. Optim. Theory Appl., 152 (2012), 256-264.  doi: 10.1007/s10957-011-9883-6.  Google Scholar

[21]

P. H. Sach, New nonlinear scalarization functions and applications, Nonlinear Anal., 75 (2012), 2281-2292.  doi: 10.1016/j.na.2011.10.028.  Google Scholar

[22]

P. H. Sach and N. B. Minh, Continuity of solution mappings in some parametric non-weak vector Ky Fan inequalities, J. Global Optim., 57 (2013), 1401-1418.  doi: 10.1007/s10898-012-0015-0.  Google Scholar

[23]

P. H. Sach and L. A. Tuan, New scalarizing approach to the stability analysis in parametric generalized Ky Fan inequality problems, J. Optim. Theory Appl., 157 (2013), 347-364.  doi: 10.1007/s10957-012-0105-7.  Google Scholar

[24]

Q. L. Wang and S. J. Li, Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem, J. Ind. Manag. Optim., 10 (2014), 1225-1234.  doi: 10.3934/jimo.2014.10.1225.  Google Scholar

[1]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[2]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[3]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[4]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[5]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[6]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[7]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[8]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[9]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[10]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[11]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[12]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[13]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[14]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[15]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[16]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[17]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[18]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[19]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[20]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (63)
  • HTML views (362)
  • Cited by (0)

Other articles
by authors

[Back to Top]