• Previous Article
    A superlinearly convergent hybrid algorithm for solving nonlinear programming
  • JIMO Home
  • This Issue
  • Next Article
    Effective heuristics for makespan minimization in parallel batch machines with non-identical capacities and job release times
April  2017, 13(2): 995-1007. doi: 10.3934/jimo.2016058

Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times

1. 

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China

2. 

Center of Financial Engineering, Nanjing Audit University, Nanjing 211815, China

* Corresponding author

Received  December 2015 Revised  June 2016 Published  August 2016

We investigate the infinite-time ruin probability of a renewal risk model with exponential Lévy process investment and dependent claims and inter-arrival times. Assume that claims and corresponding inter-arrival times form a sequence of independent and identically distributed copies of a random pair $(X,T)$ with dependent components. When the product of the claims and the discount factors of the corresponding inter-arrival times are heavy tailed, we establish an asymptotic formula for the infinite-time ruin probability without any restriction on the dependence structure of $(X,T)$.

Citation: Rongfei Liu, Dingcheng Wang, Jiangyan Peng. Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial & Management Optimization, 2017, 13 (2) : 995-1007. doi: 10.3934/jimo.2016058
References:
[1]

A. V. Asimit and A. L. Badescu, Extremes on the discounted aggregate claims in a time dependent risk model, Scandinavian Actuarial Journal, 2010 (2010), 93-104.  doi: 10.1080/03461230802700897.  Google Scholar

[2] N. H. BinghamC. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987.  doi: 10.1017/CBO9780511721434.  Google Scholar
[3]

L. Breiman, On some limit theorems similar to the arc-sin law, Theory of Probability and Its Applications, 10 (1965), 351-360.   Google Scholar

[4]

Y. Chen, The finite-time ruin probability with dependent insurance and financial risks, Journal of Applied Probability, 48 (2011), 1035-1048.  doi: 10.1017/S0021900200008603.  Google Scholar

[5]

D. B. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables, Stochastic Processes and Their Applications, 49 (1994), 75-98.  doi: 10.1016/0304-4149(94)90113-9.  Google Scholar

[6]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC, London, 2004.  Google Scholar

[7]

S. EmmerC. Klüppelberg and R. Korn, Optimal portfolios with bounded capital at risk, Mathematical Finance, 11 (2001), 365-384.  doi: 10.1111/1467-9965.00121.  Google Scholar

[8]

S. Emmer and C. Klüppelberg, Optimal portfolios when stock prices follow an exponential Lévy process, Finance and Stochastics, 8 (2004), 17-44.  doi: 10.1007/s00780-003-0105-4.  Google Scholar

[9]

K. A. Fu and C. Y. A. Ng, Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims, Insurance: Mathematics and Economics, 56 (2014), 80-87.  doi: 10.1016/j.insmatheco.2014.04.001.  Google Scholar

[10]

F. Guo and D. Wang, Uniform asymptotic estimates for ruin probabilities of renewal risk models with exponential Lévy process investment returns and dependent claims, Applied Stochastic Models in Business and Industry, 29 (2013), 295-313.  doi: 10.1002/asmb.1925.  Google Scholar

[11]

C. C. Heyde and D. Wang, Finite-time ruin probability with an exponential Lévy process investment return and heavy-tailed claims, Advances in Applied Probability, 41 (2009), 206-224.  doi: 10.1017/S0001867800003190.  Google Scholar

[12]

C. Klüppelberg and R. Kostadinova, Integrated insurance risk models with exponential Lévy investment, Insurance: Mathematics and Economics, 42 (2008), 560-577.  doi: 10.1016/j.insmatheco.2007.06.002.  Google Scholar

[13]

R. Korn, Optimal Portfolios, World Scientific, Singapore, 1997. Google Scholar

[14]

J. LiQ. Tang and R. Wu, Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model, Advances in Applied Probability, 42 (2010), 1126-1146.  doi: 10.1017/S0001867800004559.  Google Scholar

[15]

J. Li, Asymptotics in a time-dependent renewal risk model with stochastic return, Journal of Mathematical Analysis and Applications, 387 (2012), 1009-1023.  doi: 10.1016/j.jmaa.2011.10.012.  Google Scholar

[16]

K. Maulik and B. Zwart, Tail asymptotics for exponential functionals of Lévy processes, Stochastic Processes and their Applications, 116 (2006), 156-177.  doi: 10.1016/j.spa.2005.09.002.  Google Scholar

[17] K. Sato, Lévy Processes and Infinite Divisibility, Cambridge University Press, Cambridge, 1999.   Google Scholar
[18]

D. WangC. Su and Y. Zeng, Uniform estimate for maximum of randomly weighted sums with applications to insurance risk theory, Science in China Series A: Mathematics, 48 (2005), 1379-1394.  doi: 10.1360/022004-16.  Google Scholar

show all references

References:
[1]

A. V. Asimit and A. L. Badescu, Extremes on the discounted aggregate claims in a time dependent risk model, Scandinavian Actuarial Journal, 2010 (2010), 93-104.  doi: 10.1080/03461230802700897.  Google Scholar

[2] N. H. BinghamC. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987.  doi: 10.1017/CBO9780511721434.  Google Scholar
[3]

L. Breiman, On some limit theorems similar to the arc-sin law, Theory of Probability and Its Applications, 10 (1965), 351-360.   Google Scholar

[4]

Y. Chen, The finite-time ruin probability with dependent insurance and financial risks, Journal of Applied Probability, 48 (2011), 1035-1048.  doi: 10.1017/S0021900200008603.  Google Scholar

[5]

D. B. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables, Stochastic Processes and Their Applications, 49 (1994), 75-98.  doi: 10.1016/0304-4149(94)90113-9.  Google Scholar

[6]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC, London, 2004.  Google Scholar

[7]

S. EmmerC. Klüppelberg and R. Korn, Optimal portfolios with bounded capital at risk, Mathematical Finance, 11 (2001), 365-384.  doi: 10.1111/1467-9965.00121.  Google Scholar

[8]

S. Emmer and C. Klüppelberg, Optimal portfolios when stock prices follow an exponential Lévy process, Finance and Stochastics, 8 (2004), 17-44.  doi: 10.1007/s00780-003-0105-4.  Google Scholar

[9]

K. A. Fu and C. Y. A. Ng, Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims, Insurance: Mathematics and Economics, 56 (2014), 80-87.  doi: 10.1016/j.insmatheco.2014.04.001.  Google Scholar

[10]

F. Guo and D. Wang, Uniform asymptotic estimates for ruin probabilities of renewal risk models with exponential Lévy process investment returns and dependent claims, Applied Stochastic Models in Business and Industry, 29 (2013), 295-313.  doi: 10.1002/asmb.1925.  Google Scholar

[11]

C. C. Heyde and D. Wang, Finite-time ruin probability with an exponential Lévy process investment return and heavy-tailed claims, Advances in Applied Probability, 41 (2009), 206-224.  doi: 10.1017/S0001867800003190.  Google Scholar

[12]

C. Klüppelberg and R. Kostadinova, Integrated insurance risk models with exponential Lévy investment, Insurance: Mathematics and Economics, 42 (2008), 560-577.  doi: 10.1016/j.insmatheco.2007.06.002.  Google Scholar

[13]

R. Korn, Optimal Portfolios, World Scientific, Singapore, 1997. Google Scholar

[14]

J. LiQ. Tang and R. Wu, Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model, Advances in Applied Probability, 42 (2010), 1126-1146.  doi: 10.1017/S0001867800004559.  Google Scholar

[15]

J. Li, Asymptotics in a time-dependent renewal risk model with stochastic return, Journal of Mathematical Analysis and Applications, 387 (2012), 1009-1023.  doi: 10.1016/j.jmaa.2011.10.012.  Google Scholar

[16]

K. Maulik and B. Zwart, Tail asymptotics for exponential functionals of Lévy processes, Stochastic Processes and their Applications, 116 (2006), 156-177.  doi: 10.1016/j.spa.2005.09.002.  Google Scholar

[17] K. Sato, Lévy Processes and Infinite Divisibility, Cambridge University Press, Cambridge, 1999.   Google Scholar
[18]

D. WangC. Su and Y. Zeng, Uniform estimate for maximum of randomly weighted sums with applications to insurance risk theory, Science in China Series A: Mathematics, 48 (2005), 1379-1394.  doi: 10.1360/022004-16.  Google Scholar

[1]

Karl-Peter Hadeler, Frithjof Lutscher. Quiescent phases with distributed exit times. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 849-869. doi: 10.3934/dcdsb.2012.17.849

[2]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[3]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[4]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[5]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[6]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[7]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[8]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[9]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[10]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[11]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[12]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[14]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[15]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[16]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[17]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[18]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[19]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[20]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (82)
  • HTML views (921)
  • Cited by (2)

Other articles
by authors

[Back to Top]