[1]
|
M. Asghari, S. J. Abrishami and F. Mahdavi, Reverse logistic network design with incentive-dependent return, Industrial Engineering & Management Systems, 13 (2014), 383-397.
doi: 10.7232/iems.2014.13.4.383.
|
[2]
|
A. Banerjee, A joint economic-lot-size model for purchaser and vendor, Decision Sciences, 17 (1986), 292-311.
doi: 10.1111/j.1540-5915.1986.tb00228.x.
|
[3]
|
M. Ben-Daya and A. Raouf, Inventory models involving lead time as decision variable, The Journal of the Operational Research Society, 45 (1994), 579-582.
|
[4]
|
S. Bylka, Competitive and cooperative policies for the vendor-buyer system, International Journal of Production Economics, 81/82 (2003), 533-544.
doi: 10.1016/S0925-5273(02)00273-6.
|
[5]
|
L. E. Cárdenas-Barrón, Optimizing inventory decisions in a multi-stage multi-customer supply chain: A note, Transportation Research Part E: Logistics and Transportation Review, 43 (2007), 647-654.
|
[6]
|
L. E. Cárdenas-Barrón, The derivation of EOQ/EPQ inventory models with two backorders costs using analytic geometry and algebra, Applied Mathematical Modelling, 35 (2011), 2394-2407.
doi: 10.1016/j.apm.2010.11.053.
|
[7]
|
R. P. Covert and G. C. Philip, An EOQ model for items with Weibull distribution deterioration, A I I E Transactions, 5 (1973), 323-326.
|
[8]
|
P. M. Ghare and G. F. Schrader, A model for exponentially decaying inventory, Journal of Industrial Engineering, 14 (1963), 238-243.
|
[9]
|
A. Goswami and K. S. Chaudhuri, An EOQ model for deteriorating items with shortages and a linear trend in demand, The Journal of the Operational Research Society, 42 (1991), 1105-1110.
|
[10]
|
S. K. Goyal, An integrated inventory model for a single supplier-single customer problem, International Journal of Production Research, 15 (2007), 107-111.
doi: 10.1080/00207547708943107.
|
[11]
|
S. K. Goyal, Economic ordering policy for deteriorating items over an infinite time horizon, European Journal of Operational Research, 28 (1987), 298-301.
doi: 10.1016/S0377-2217(87)80172-8.
|
[12]
|
S. K. Goyal, A joint economic-lot-size model for purchaser and vendor: A comment, Decision Sciences, 19 (1988), 236-241.
doi: 10.1111/j.1540-5915.1988.tb00264.x.
|
[13]
|
M. Hariga and M. Ben-Daya, Some stochastic inventory models with deterministic variable lead time, European Journal of Operational Research, 113 (1999), 42-51.
doi: 10.1016/S0377-2217(97)00441-4.
|
[14]
|
R. M. Hill, The single-vendor single-buyer integrated production-inventory model with a generalised policy, European Journal of Operational Research, 97 (1997), 493-499.
doi: 10.1016/S0377-2217(96)00267-6.
|
[15]
|
J. D. Hng and J. C. Hayya, Joint investment in quality improvement and setup reduction, Computers & Operations Research, 22 (1995), 567-574.
|
[16]
|
H. Hwang, D. B. Kim and Y. D. Kim, Multiproduct economic lot size models with investments costs for setup reduction and quality improvement, International Journal of Production Research, 31 (1993), 691-703.
doi: 10.1080/00207549308956751.
|
[17]
|
G. Keller and H. Noori, Impact of investing in quality improvement on the lot size model, OMEGA, 16 (1988), 595-601.
doi: 10.1016/0305-0483(88)90033-3.
|
[18]
|
G. Keller and H. Noori, Justifying new technology acquisition through its impact on the cost of running an inventory policy, IIE Transactions, 20 (1988), 284-291.
doi: 10.1080/07408178808966182.
|
[19]
|
E. Kusukawa and S. Alozawa, Optimal operation for green supply chain with quality of recyclable parts and contract for recycling activity, Industrial Engineering & Management Systems, 14 (2015), 248-274.
doi: 10.7232/iems.2015.14.3.248.
|
[20]
|
C. J. Liao and C. H. Shyu, An analytical determination of lead time with normal demand, International Journal of Operations & Production Management, 11 (1991), 72-80.
doi: 10.1108/EUM0000000001287.
|
[21]
|
R. B. Misra, Optimum production lotsize model for a system with deteriorating inventory, International Journal of Production Research, 13 (1975), 495-505.
|
[22]
|
I. Moon, Multiproduct economic lot size models with investments costs for setup reduction and quality improvement: review and extensions, International Journal of Production Research, 32 (1994), 2795-2801.
doi: 10.1080/00207549408957100.
|
[23]
|
I. Moon and S. Choi, A note on lead time and distributional assumptions in continuous review inventory models, Computers and Operations Research, 25 (1998), 1007-1012.
doi: 10.1016/S0305-0548(97)00103-2.
|
[24]
|
L. Y. Ouyang, N. C. Yeh and K. S. Wu, Mixture inventory model with backorders and lost sales for variable lead time, The Journal of the Operational Research Society, 47 (1996), 829-832.
|
[25]
|
M. J. Paknejad, F. Nasri and J. F. Affisco, Defective units in a continuous review (s, Q) system, International Journal of Production Research, 33 (1995), 2767-2777.
doi: 10.1080/00207549508904844.
|
[26]
|
C. Park, Partial backordering inventory model under purchase dependence, Industrial Engineering & Management Systems, 14 (2015), 275-288.
|
[27]
|
E. L. Porteus, Optimal lot sizing, process quality improvement and setup cost reduction, Operations Research, 34 (1986), 137-144.
doi: 10.1287/opre.34.1.137.
|
[28]
|
E. L. Porteus, Investing in reduced setups in the EOQ model, Management Science, 31 (1985), 998-1010.
doi: 10.1287/mnsc.31.8.998.
|
[29]
|
F. Raafat, Survey of literature on continuously deteriorating inventory model, The Journal of the Operational Research Society, 42 (1991), 27-37.
|
[30]
|
M. J. Rosenblatt and H. L. Lee, Economic production cycles with imperfect production processes, IIE Transactions, 18 (1986), 48-55.
doi: 10.1080/07408178608975329.
|
[31]
|
B. Sarkar, An EOQ model with delay in payments and time varying deterioration rate, Mathematical and Computer Modelling, 55 (2012), 367-377.
doi: 10.1016/j.mcm.2011.08.009.
|
[32]
|
B. Sarkar, A production-inventory model with probabilistic deterioration in two-echelon supply chain management, Applied Mathematical Modelling, 37 (2013), 3138-3151.
doi: 10.1016/j.apm.2012.07.026.
|
[33]
|
B. Sarkar, K. Chaudhuri and I. Moon, Manufacturing setup cost reduction and quality improvement for the distribution free continuous-review inventory model with a service level constraint, Journal of Manufacturing Systems, 34 (2015), 74-82.
|
[34]
|
B. R. Sarker and E. R. Coates, Manufacturing setup cost reduction under variable lead times and finite opportunities for investment, International Journal of Production Economics, 49 (1997), 237-247.
doi: 10.1016/S0925-5273(97)00010-8.
|
[35]
|
B. Sarkar, B. Mandal and S. Sarkar, Quality improvement and backorder price discount under controllable lead time in an inventory model, Journal of Manufacturing Systems, 35 (2015), 26-36.
doi: 10.1016/j.jmsy.2014.11.012.
|
[36]
|
B. Sarkar and I. Moon, Improved quality, set up cost reduction and variable backorder costs in an imperfect production process, International Journal of Production Economics, 155 (2014), 204-213.
|
[37]
|
B. Sarkar, S. Saren and H. M. Wee, An inventory model with variable demand, component cost and selling price for deteriorating items, Economic Modelling, 30 (2013), 306-310.
doi: 10.1016/j.econmod.2012.09.002.
|
[38]
|
B. Sarkar and S. Sarkar, An improved inventory model with partial backlogging, time varying deterioration and stock-dependent demand, Economic Modelling, 30 (2013), 924-932.
doi: 10.1016/j.econmod.2012.09.049.
|
[39]
|
B. Sarkar and S. Sarkar, Variable deterioration and demand-a inventory model, Economic Modelling, 31 (2013), 548-556.
doi: 10.1016/j.econmod.2012.11.045.
|
[40]
|
Y. K. Shah, An order-level lot-size inventory model for deteriorating items, A I I E Transactions, 9 (1977), 108-112.
doi: 10.1080/05695557708975129.
|
[41]
|
E. A. Silver, Changing the givens in modelling inventory problems: The example of just-in-time systems, International Journal of Production Economics, 26 (1992), 347-351.
doi: 10.1016/0925-5273(92)90086-M.
|
[42]
|
E. A. Silver, D. F. Pyke and R. Peterson, Inventory Management and Production Planning and Scheduling, Wiley, New York, 1998.
|
[43]
|
K. Skouri and S. Papachristos, Four inventory models for deteriorating items with time varying demand and partial backlogging: A cost comparison, Optimal Control Applications and Methods, 24 (2003), 315-330.
doi: 10.1002/oca.734.
|
[44]
|
K. Skouri, I. Konstantaras, S. Papachristos and I. Ganas, Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate, European Journal of Operational Research, 192 (2009), 79-92.
doi: 10.1016/j.ejor.2007.09.003.
|
[45]
|
J. T. Teng, L. E. Cárdenas-Barrón, K. R. Lou and H. M. Wee, Optimal economic order quantity for buyer-distributor-vendor supply chain with backlogging without derivatives, International Journal of Systems Science, 44 (2013), 986-994.
doi: 10.1080/00207721.2011.652226.
|
[46]
|
A. Villa, Introducing some supply chain management problems, International Journal of Production Economics, 73 (2001), 1-4.
doi: 10.1016/S0925-5273(01)00090-1.
|
[47]
|
S. Viswanathan, Optimal strategy for the integrated vendor-buyer inventory model, European Journal of Operational Research, 105 (1998), 38-42.
doi: 10.1016/S0377-2217(97)00032-5.
|
[48]
|
N. Watanable and E. Kusukawa, Optimal ordering policy in dual-sourcing supply chain considering supply disruptions and demand information, Industrial Engineering & Management Systems, 14 (2015), 129-158.
|
[49]
|
W. Wisittipanich and P. Hengmeechai, A multi-objective differential evolution for just-in-time door assignment and truck scheduling in multi-door cross docking problems, Industrial Engineering & Management Systems, 14 (2015), 299-311.
doi: 10.7232/iems.2015.14.3.299.
|
[50]
|
P. C. Yang and H. M. Wee, An arborescent inventory model in a supply chain system, Production Planning & Control: The Management of Operations, 12 (2001), 728-735.
doi: 10.1080/09537280010024063.
|