
-
Previous Article
Optimal Sharpe ratio in continuous-time markets with and without a risk-free asset
- JIMO Home
- This Issue
-
Next Article
Stability of a queue with discriminatory random order service discipline and heterogeneous servers
Equilibrium analysis of an opportunistic spectrum access mechanism with imperfect sensing results
1. | School of Information Science and Engineering, Key Laboratory for Computer Virtual Technology, and System Integration of Hebei Province, Yanshan University, Qinhuangdao 066004, China |
2. | Department of Intelligence and Informatics, Konan University, Kobe 658-8501, Japan |
3. | School of Information Science and Engineering, Key Laboratory for Computer Virtual Technology, and System Integration of Hebei Province, Yanshan University, Qinhuangdao 066004, China |
In order to reduce the average delay of secondary user (SU) packets and adapt to various levels of tolerance for transmission interruption, we propose a novel opportunistic channel access mechanism with admission threshold and probabilistic feedback in cognitive radio networks (CRNs). Considering the preemptive priority of primary user (PU) packets, as well as the sensing errors of missed detection and false alarm caused by SUs, we establish a type of priority queueing model in which two classes of customers may interfere with each other. Based on this queueing model, we evaluate numerically the proposed mechanism and then present the system performance optimization. By employing a matrix-geometric solution, we derive the expressions for some important performance measures. Then, by building a reward function, we investigate the strategies for both the Nash equilibrium and the social optimization. Finally, we provide a pricing policy for SU packets to coordinate these two strategies. With numerical experiments, we verify the effectiveness of the proposed opportunistic channel access mechanism and the rationality of the proposed pricing policy.
References:
[1] |
O. Altrad, S. Muhaidat, A. Al-Dweik, A. Shami and P. Yoo,
Opportunistic spectrum access in cognitive radio networks under imperfect spectrum sensing, IEEE Transactions on Vehicular Technology, 63 (2014), 920-925.
doi: 10.1109/TVT.2013.2281334. |
[2] |
S. Atapattu, C. Tellambura and H. Jiang,
Energy detection based cooperative spectrum sensing in cognitive radio networks, IEEE Transactions on Wireless Communications, 10 (2011), 1232-1241.
doi: 10.1109/TWC.2011.012411.100611. |
[3] |
A. Bhowmick, M. Das, J. Biswas, S. Roy and S. Kundu,
Throughput optimization with cooperative spectrum sensing in cognitive radio network, Proceeding of the 4th IEEE International Advance Computing Conference, (2014), 329-332.
doi: 10.1109/IAdCC.2014.6779343. |
[4] |
G. Bochechka and V. Tikhvinskiy,
Spectrum occupation and perspectives millimeter band utilization for 5G networks, Proceeding of ITU Kaleidoscope Academic Conference: Living in a Converged World-Impossible without Standards?, (2014), 69-72.
doi: 10.1109/Kaleidoscope.2014.6858482. |
[5] |
S. Ge, S. Jin and W. Yue,
Throughput analysis for the opportunistic channel access mechanism in CRNs with imperfect sensing results, Proceeding of Queueing Theory and Network
Applications, 383 (2015), 55-62.
doi: 10.1007/978-3-319-22267-7_5. |
[6] |
G. Ghosh, S. Chatterjee and P. Das,
Cognitive radio and dynamic spectrum access-A study, International Journal of Next-Generation Networks, 6 (2014), 43-60.
doi: 10.5121/ijngn.2014.6104. |
[7] |
A. Gorcin, K. Qaraqe, H. Celebi and H. Arslan,
An adaptive threshold method for spectrum sensing in multi-channel cognitive radio networks, Proceeding of the 17th International Conference on Telecommunications, (2010), 425-429.
doi: 10.1109/ICTEL.2010.5478783. |
[8] |
R. Hassin and M. Haviv,
To Queue or Not To Queue: Equilibrium Behavior in Queueing Systems, Springer, Boston, 2003.
doi: 10.1007/978-1-4615-0359-0. |
[9] |
H. Hu, H. Zhang, Y. Xu and N. Li, Minimum transmission delay via spectrum sensing in cognitive radio networks, Proceeding of IEEE Wireless Communications and Networking Conference, (2013), 4101-4106. Google Scholar |
[10] |
H. Hu, H. Zhang and H. Yu,
Efficient spectrum sensing with minimum transmission delay in cognitive radio networks, Mobile Networks and Applications, 19 (2014), 487-501.
doi: 10.1007/s11036-014-0528-5. |
[11] |
M. Kahvand, M. Soleimani and M. Dabiranzohouri, Channel selection in cognitive radio networks: A new dynamic approach, Proceeding of the 11th IEEE Malaysia International Conference on Communications, (2013), 407-411. Google Scholar |
[12] |
J. Kim and G. Hwang,
Cross-layer modeling and optimization of multi-channel cognitive radio networks under imperfect channel sensing, Journal of Industrial & Management Optimization, 11 (2015), 763-777.
doi: 10.3934/jimo.2015.11.807. |
[13] |
K. Kim, K. Kwak and B. Choi,
Performance analysis of opportunistic spectrum access protocol for multi-channel cognitive radio networks, Journal of Communications and Networks, 15 (2013), 77-86.
doi: 10.1109/JCN.2013.000013. |
[14] |
H. Li and Z. Han, Socially optimal queuing control in cognitive radio networks subject to service interruptions: To queue or not to queue?, IEEE Transactions on Wireless Communications, 10 (2011), 1656-1666. Google Scholar |
[15] |
Y. Liang, K. Chen, G. Li and P. Mahonen,
Cognitive radio networking and communications: An overview, IEEE Transactions on Vehicular Technology, 60 (2011), 3386-3407.
doi: 10.1109/TVT.2011.2158673. |
[16] |
Y. Liang, Y. Zeng, E. Peh and A. Hoang,
Sensing-throughput tradeoff for cognitive radio networks, IEEE Transactions on Wireless Communications, 7 (2008), 1326-1337.
doi: 10.1109/ICC.2007.882. |
[17] |
M. Neuts,
Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, Courier Dover Publications, Baltimore, 1981. |
[18] |
S. Tan, J. Zeidler and B. Rao, Opportunistic spectrum access for cognitive radio networks with multiple secondary users, IEEE Transactions on Wireless Communications, 12 (2013), 6214-6227. Google Scholar |
[19] |
N. Tran, C. Do, S. Moon and C. Hong,
Pricing mechanisms and equilibrium behaviors of noncooperative users in cognitive radio networks, Proceeding of IEEE Global Communications Conference, (2013), 913-918.
doi: 10.1109/GLOCOM.2013.6831190. |
[20] |
Y. Wang, J. Li, L. Huang, Y. Jing, A. Georgakopoulos and P. Demestichas,
5G mobile: Spectrum broadening to higher-frequency bands to support high data rates, IEEE Vehicular Technology Society, 9 (2014), 39-46.
doi: 10.1109/MVT.2014.2333694. |
[21] |
B. Wang and K. Liu, Advances in cognitive radio networks: A survey, IEEE Journal of Selected Topics in Signal Processing, 5 (2011), 5-23. Google Scholar |
show all references
References:
[1] |
O. Altrad, S. Muhaidat, A. Al-Dweik, A. Shami and P. Yoo,
Opportunistic spectrum access in cognitive radio networks under imperfect spectrum sensing, IEEE Transactions on Vehicular Technology, 63 (2014), 920-925.
doi: 10.1109/TVT.2013.2281334. |
[2] |
S. Atapattu, C. Tellambura and H. Jiang,
Energy detection based cooperative spectrum sensing in cognitive radio networks, IEEE Transactions on Wireless Communications, 10 (2011), 1232-1241.
doi: 10.1109/TWC.2011.012411.100611. |
[3] |
A. Bhowmick, M. Das, J. Biswas, S. Roy and S. Kundu,
Throughput optimization with cooperative spectrum sensing in cognitive radio network, Proceeding of the 4th IEEE International Advance Computing Conference, (2014), 329-332.
doi: 10.1109/IAdCC.2014.6779343. |
[4] |
G. Bochechka and V. Tikhvinskiy,
Spectrum occupation and perspectives millimeter band utilization for 5G networks, Proceeding of ITU Kaleidoscope Academic Conference: Living in a Converged World-Impossible without Standards?, (2014), 69-72.
doi: 10.1109/Kaleidoscope.2014.6858482. |
[5] |
S. Ge, S. Jin and W. Yue,
Throughput analysis for the opportunistic channel access mechanism in CRNs with imperfect sensing results, Proceeding of Queueing Theory and Network
Applications, 383 (2015), 55-62.
doi: 10.1007/978-3-319-22267-7_5. |
[6] |
G. Ghosh, S. Chatterjee and P. Das,
Cognitive radio and dynamic spectrum access-A study, International Journal of Next-Generation Networks, 6 (2014), 43-60.
doi: 10.5121/ijngn.2014.6104. |
[7] |
A. Gorcin, K. Qaraqe, H. Celebi and H. Arslan,
An adaptive threshold method for spectrum sensing in multi-channel cognitive radio networks, Proceeding of the 17th International Conference on Telecommunications, (2010), 425-429.
doi: 10.1109/ICTEL.2010.5478783. |
[8] |
R. Hassin and M. Haviv,
To Queue or Not To Queue: Equilibrium Behavior in Queueing Systems, Springer, Boston, 2003.
doi: 10.1007/978-1-4615-0359-0. |
[9] |
H. Hu, H. Zhang, Y. Xu and N. Li, Minimum transmission delay via spectrum sensing in cognitive radio networks, Proceeding of IEEE Wireless Communications and Networking Conference, (2013), 4101-4106. Google Scholar |
[10] |
H. Hu, H. Zhang and H. Yu,
Efficient spectrum sensing with minimum transmission delay in cognitive radio networks, Mobile Networks and Applications, 19 (2014), 487-501.
doi: 10.1007/s11036-014-0528-5. |
[11] |
M. Kahvand, M. Soleimani and M. Dabiranzohouri, Channel selection in cognitive radio networks: A new dynamic approach, Proceeding of the 11th IEEE Malaysia International Conference on Communications, (2013), 407-411. Google Scholar |
[12] |
J. Kim and G. Hwang,
Cross-layer modeling and optimization of multi-channel cognitive radio networks under imperfect channel sensing, Journal of Industrial & Management Optimization, 11 (2015), 763-777.
doi: 10.3934/jimo.2015.11.807. |
[13] |
K. Kim, K. Kwak and B. Choi,
Performance analysis of opportunistic spectrum access protocol for multi-channel cognitive radio networks, Journal of Communications and Networks, 15 (2013), 77-86.
doi: 10.1109/JCN.2013.000013. |
[14] |
H. Li and Z. Han, Socially optimal queuing control in cognitive radio networks subject to service interruptions: To queue or not to queue?, IEEE Transactions on Wireless Communications, 10 (2011), 1656-1666. Google Scholar |
[15] |
Y. Liang, K. Chen, G. Li and P. Mahonen,
Cognitive radio networking and communications: An overview, IEEE Transactions on Vehicular Technology, 60 (2011), 3386-3407.
doi: 10.1109/TVT.2011.2158673. |
[16] |
Y. Liang, Y. Zeng, E. Peh and A. Hoang,
Sensing-throughput tradeoff for cognitive radio networks, IEEE Transactions on Wireless Communications, 7 (2008), 1326-1337.
doi: 10.1109/ICC.2007.882. |
[17] |
M. Neuts,
Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, Courier Dover Publications, Baltimore, 1981. |
[18] |
S. Tan, J. Zeidler and B. Rao, Opportunistic spectrum access for cognitive radio networks with multiple secondary users, IEEE Transactions on Wireless Communications, 12 (2013), 6214-6227. Google Scholar |
[19] |
N. Tran, C. Do, S. Moon and C. Hong,
Pricing mechanisms and equilibrium behaviors of noncooperative users in cognitive radio networks, Proceeding of IEEE Global Communications Conference, (2013), 913-918.
doi: 10.1109/GLOCOM.2013.6831190. |
[20] |
Y. Wang, J. Li, L. Huang, Y. Jing, A. Georgakopoulos and P. Demestichas,
5G mobile: Spectrum broadening to higher-frequency bands to support high data rates, IEEE Vehicular Technology Society, 9 (2014), 39-46.
doi: 10.1109/MVT.2014.2333694. |
[21] |
B. Wang and K. Liu, Advances in cognitive radio networks: A survey, IEEE Journal of Selected Topics in Signal Processing, 5 (2011), 5-23. Google Scholar |







Parameters | Values |
slot | 1 ms |
transmission rate in physical layer | 11 Mbps |
arrival rate of SU packets | 0.3 |
mean size of an SU packet | 1760 Byte |
arrival rate of PU packets | 0.05 |
mean size of a PU packet | 2010 Byte |
feedback probability | 0.0-1.0 |
energy threshold | 1.0-7.0 |
simulation scale | 3 million slots |
sensing time | 0.1 ms |
sensing frequency | 10 times/ms |
Parameters | Values |
slot | 1 ms |
transmission rate in physical layer | 11 Mbps |
arrival rate of SU packets | 0.3 |
mean size of an SU packet | 1760 Byte |
arrival rate of PU packets | 0.05 |
mean size of a PU packet | 2010 Byte |
feedback probability | 0.0-1.0 |
energy threshold | 1.0-7.0 |
simulation scale | 3 million slots |
sensing time | 0.1 ms |
sensing frequency | 10 times/ms |
Admission threshold | Admission probability | Feedback probability | Admission price |
4 | 0.4 | 0.4 | 1.0873 |
3 | 0.4 | 0.4 | 1.0687 |
2 | 0.4 | 0.4 | 1.0272 |
2 | 0.4 | 0.0 | 1.0341 |
2 | 0.4 | 0.7 | 1.0163 |
2 | 0.8 | 0.7 | 1.0640 |
2 | 0.1 | 0.7 | 0.9938 |
Admission threshold | Admission probability | Feedback probability | Admission price |
4 | 0.4 | 0.4 | 1.0873 |
3 | 0.4 | 0.4 | 1.0687 |
2 | 0.4 | 0.4 | 1.0272 |
2 | 0.4 | 0.0 | 1.0341 |
2 | 0.4 | 0.7 | 1.0163 |
2 | 0.8 | 0.7 | 1.0640 |
2 | 0.1 | 0.7 | 0.9938 |
[1] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[2] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[3] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[4] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[5] |
Juan Manuel Pastor, Javier García-Algarra, José M. Iriondo, José J. Ramasco, Javier Galeano. Dragging in mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 37-52. doi: 10.3934/nhm.2015.10.37 |
[6] |
Alessandro Gondolo, Fernando Guevara Vasquez. Characterization and synthesis of Rayleigh damped elastodynamic networks. Networks & Heterogeneous Media, 2014, 9 (2) : 299-314. doi: 10.3934/nhm.2014.9.299 |
[7] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[8] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[9] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[10] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[11] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[12] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[13] |
Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014 |
[14] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[15] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[16] |
Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209 |
[17] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[18] |
Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021018 |
[19] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[20] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]