[1]
|
A.-S. Alfa, A discrete MAP/PH/1 queue with vacations and exhaustive time-limited service, Oper. Res. Lett., 18 (1995), 31-40.
doi: 10.1016/0167-6377(95)00015-C.
|
[2]
|
A.-S. Alfa, Discrete time analysis of MAP/PH/1 vacation queue with gated time-limited service, Queueing Systems, 29 (1998), 35-54.
doi: 10.1023/A:1019123828374.
|
[3]
|
Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations, Operation Research Letters, 33 (2005), 201-209.
doi: 10.1016/j.orl.2004.05.006.
|
[4]
|
S. Chang and T. Takine, Factorization and stochastic decomposition properties in bulk queues with generalized vacations, Queueing Systems, 50 (2005), 165-183.
doi: 10.1007/s11134-005-0510-9.
|
[5]
|
B. T. Doshi, Queueing systems with vacations -a survey, Queueing Systems, 1 (1986), 29-66.
doi: 10.1007/BF01149327.
|
[6]
|
N. S. C. Goswami, The discrete-time MAP/PH/1 queue with multiple working vacations, Applied Mathematical Modelling, 34 (2010), 931-946.
doi: 10.1016/j.apm.2009.07.021.
|
[7]
|
G. Horváth, B. Van Houdt and M. Telek, Commuting matrices in the queue length and sojourn time analysis of MAP/MAP/1 queues, Stochastic Models, 30 (2014), 554-575.
doi: 10.1080/15326349.2014.930669.
|
[8]
|
J.-C. Ke, C.-H. Wu and Z. G. Zhang, Recent developments in vacation queueing models: A short survey, International Journal of Operations Research, 7 (2010), 3-8.
|
[9]
|
G. Latouche and V. Ramaswami,
Introduction to Matrix Analytic Methods in Stochastic Modeling ASA-SIAM Series on Statistics and Applied Probability, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; American Statistical Association, Alexandria, VA, 1999.
doi: 10.1137/1.9780898719734.
|
[10]
|
J. H. Li, N. S. Tian and W. Liu, Discrete-time GI/Geom/1 queue with multiple working vacations, Queueing Systems, 56 (2007), 53-63.
doi: 10.1007/s11134-007-9030-0.
|
[11]
|
M. F. Neuts, A versatile Markovian point process, Journal of Applied Probability, 16 (1979), 764-779.
doi: 10.1017/S0021900200033465.
|
[12]
|
Z. Saffer and M. Telek, Analysis of BMAP/G/1 vacation model of non-M/G/1-type, in
EPEW, vol. 5261 of LNCS, Springer, Mallorca, Spain, 2008,212–226.
doi: 10.1007/978-3-540-87412-6_16.
|
[13]
|
Z. Saffer and M. Telek, Closed form results for BMAP/G/1 vacation model with binomial type disciplines, Publ. Math. Debrecen, 76 (2010), 359-378.
|
[14]
|
Z. Saffer and W. Yue, M/M/c multiple synchronous vacation model with gated discipline, Journal of Industrial and Management Optimization (JIMO), 8 (2012), 939-968.
doi: 10.3934/jimo.2012.8.939.
|
[15]
|
W. -H. Steeb,
Matrix Calculus and Kronecker Product with Applications and C++ Programs World Scientific, 1997.
doi: 10.1142/3572.
|
[16]
|
H. Takagi,
Queueing Analysis -A Foundation of Performance Evaluation, Vacation and Prority Systems, vol. 1 North-Holland, New York, 1991.
|
[17]
|
N. Tian and Z. G. Zhang,
Vacation Queueing Models: Theory and Applications vol. 93, Springer Science & Business Media, 2006.
|
[18]
|
D. Wu and H. Takagi, M/G/1 queue with multiple working vacations, Performance Evaluation, 63 (2006), 654-681.
doi: 10.1016/j.peva.2005.05.005.
|