[1]
|
F. Alvarez, On the minimizing property of a second order dissipative dynamical system in Hilbert spaces, SIAM Journal on Control and Optimization, 39 (2000), 1102-1119.
doi: 10.1137/S0363012998335802.
|
[2]
|
F. Alvarez and H. Attouch, An inertial proximal method for maximal monotone operators via Discretization of a nonlinear oscillator with damping, Set-Valued Analysis, 9 (2001), 3-11.
doi: 10.1023/A:1011253113155.
|
[3]
|
F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space, SIAM Journal on Optimization, 14 (2003), 773-782.
doi: 10.1137/S1052623403427859.
|
[4]
|
H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Review, 38 (1996), 367-426.
doi: 10.1137/S0036144593251710.
|
[5]
|
C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 18 (2002), 441-453.
doi: 10.1088/0266-5611/18/2/310.
|
[6]
|
C. Byrne, An unified treatment of some iterative algorithm algorithms in signal processing and image reconstruction, Inverse Problems, 20 (2004), 103-120.
doi: 10.1088/0266-5611/20/1/006.
|
[7]
|
J. W. Chinneck, The constraint consensus method for finding approximately feasible points in nonlinear programs, INFORMS Journal on Computing, 16 (2004), 255-265.
doi: 10.1287/ijoc.1030.0046.
|
[8]
|
Y. Censor, Parallel application of block iterative methods in medical imaging and radiation therapy, Mathematical Programming, 42 (1998), 307-325.
doi: 10.1007/BF01589408.
|
[9]
|
Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numerical Algorithms, 8 (1994), 221-239.
doi: 10.1007/BF02142692.
|
[10]
|
Y. Censor, T. Elfving, N. Kopf and T. Bortfeld, The multiple-sets solit feasibility problem and its applications for inverse problems, Inverse Problems, 21 (2005), 2071-2084.
doi: 10.1088/0266-5611/21/6/017.
|
[11]
|
G. Crombez, A geometrical look at iterative methods for operators with fixed points, Numerical Functional Analysis and Optimization, 26 (2005), 137-175.
doi: 10.1081/NFA-200063882.
|
[12]
|
F. H. Clarke,
Optimization and Nonsmooth Analysis, John Wiley and Sons, New York, 1983.
|
[13]
|
F. Deutsch, The method of alternating orthogonal projections, Approximation Theory, Spline Functions and Applications, 105-121, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. , 356, Kluwer Acad. Publ. , Dordrecht, 1992
|
[14]
|
Y. Dang and Y. Gao, The strong convergence of a KM-CQ-Like algorithm for split feasibility problem,
Inverse Problems 27 (2011), 015007, 9 pp.
doi: 10.1088/0266-5611/27/1/015007.
|
[15]
|
M. Fukushima, On the convergence of a class of outer approximation algorithms for convex programs, Journal of Computational and Applied Mathematics, 10 (1984), 147-156.
doi: 10.1016/0377-0427(84)90051-7.
|
[16]
|
M. Fukushima, A relaxed projection method for variational inequalities, Mathematics Programming, 35 (1986), 58-70.
doi: 10.1007/BF01589441.
|
[17]
|
Y. Gao, Piecewise smooth Lyapunov function for a nonlinear dynamical system, Journal of Convex Analysis, 19 (2012), 1009-1015.
|
[18]
|
G. T. Herman,
Image Reconstruction From Projections: The Fundamentals of Computerized Tomography, Academic Press, New York, 1980.
|
[19]
|
P. E. Mainge, Inertial iterative process for fixed points of certain quasi-nonexpansive mappings, Set-valued Analysis, 15 (2007), 67-79.
doi: 10.1007/s11228-006-0027-3.
|
[20]
|
P. E. Mainge, Convergence theorem for inertial KM-type algorithms, Journal of Computational and Applied Mathematics, 219 (2008), 223-236.
doi: 10.1016/j.cam.2007.07.021.
|
[21]
|
Z. Opial, Weak convergence of the sequence of successive approximations for non-expansive mappings, Bull. American Mathematical Society, 73 (1967), 591-597.
doi: 10.1090/S0002-9904-1967-11761-0.
|
[22]
|
B. Qu and N. Xiu, A new halfspace-relaxation projection method for the split feasibility problem, Linear Algebra and Its Application, 428 (2008), 1218-1229.
doi: 10.1016/j.laa.2007.03.002.
|
[23]
|
H. Xu, A variabe Krasnoselski-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems, 22 (2006), 2021-2034.
doi: 10.1088/0266-5611/22/6/007.
|
[24]
|
Q. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse Problems, 20 (2004), 1261-1266.
doi: 10.1088/0266-5611/20/4/014.
|
[25]
|
A. L. Yan, G. Y. Wang and N. H. Xiu, Robust solutions of split feasibility problem with uncertain linear operator, Journal of Industrial and Management Optimization, 3 (2007), 749-761.
doi: 10.3934/jimo.2007.3.749.
|
[26]
|
J. Zhao and Q. Yang, Several solution methods for the split feasibility problem, Inverse Problems, 21 (2005), 1791-1799.
doi: 10.1088/0266-5611/21/5/017.
|