• Previous Article
    Rescheduling optimization of steelmaking-continuous casting process based on the Lagrangian heuristic algorithm
  • JIMO Home
  • This Issue
  • Next Article
    Pricing credit derivatives under a correlated regime-switching hazard processes model
July  2017, 13(3): 1417-1429. doi: 10.3934/jimo.2016080

The loss-averse newsvendor problem with random supply capacity

1. 

Department of Basic Science, Military Economics Academy, Wuhan 430035, China

2. 

Department of Automation, Tsinghua University, Beijing 100084, China

3. 

School of Business Administration, Hubei University of Economics, Wuhan 430205, China

* Corresponding author: Wei Liu

Received  April 2015 Published  October 2016

Fund Project: The paper is supported by Research Fund for the Doctoral Program of Higher Education (No.20120002110035,20130002130010) and Natural Science Foundation of China (No. 61273233).

This paper studies a newsvendor problem with random supply capacity, where the retailer (newsvendor) is loss-averse and the shortage cost is considered. When the retailer orders, the quantity actually received is the minimum between the order quantity and supply capacity, and his objective is to choose an order quantity to maximize the expected utility. It is shown that under different conditions, the loss-averse retailer may order larger than, equal to or less than the risk-neutral one, which is different from the existing result in the case without considering shortage cost. Further, if the shortage cost is less than a critical value, then the loss-averse retailer's optimal order quantity is always less than the risk-neutral retailer's. The numerical experiments are conducted to demonstrate our theoretical results.

Citation: Wei Liu, Shiji Song, Ying Qiao, Han Zhao. The loss-averse newsvendor problem with random supply capacity. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1417-1429. doi: 10.3934/jimo.2016080
References:
[1]

S. Benartzi and R. H. Thaler, Myopic loss aversion and the equity premium puzzle, Quarterly Journal of Economics, 110 (1995), 73-92.  doi: 10.3386/w4369.  Google Scholar

[2]

X. ChaoH. Chen and S. Zheng, Joint replenishment and pricing decisions in inventory systems with stochastically dependent supply capacity, European Journal of Operational Research, 191 (2008), 142-155.  doi: 10.1016/j.ejor.2007.08.012.  Google Scholar

[3]

F. W. CiaralloR. Akella and T. E. Morton, A periodic review, production planning model with uncertain capacity and uncertain demand-optimality of extended myopic policies, Management Science, 40 (1994), 320-332.  doi: 10.1287/mnsc.40.3.320.  Google Scholar

[4]

M. DadaN. C. Petruzzi and L. B. Schwarz, A newsvendor's procurement problem when suppliers are unreliable, Manufacturing & Service Operations Management, 9 (2007), 9-32.  doi: 10.1287/msom.1060.0128.  Google Scholar

[5]

X. DengJ. Xie and H. Xiong, Manufacturer-retailer contracting with asymmetric information on retailer's degree of loss aversion, International Journal of Production Economics, 142 (2013), 372-380.  doi: 10.1016/j.ijpe.2012.12.013.  Google Scholar

[6]

M. A. Fisher and A. Raman, Reducing the cost of demand uncertainty through accurate response to early sales, Operations Research, 44 (1996), 87-99.  doi: 10.1287/opre.44.1.87.  Google Scholar

[7]

D. Genesove and C. Mayer, Loss aversion and seller behavior: Evidence from the housing market, Quarterly Journal of Economics, 116 (2001), 1233-1260.  doi: 10.3386/w8143.  Google Scholar

[8]

R. GulluE. Onol and N. Erkip, Analysis of an inventory system under supply uncertainty, International Journal of Production Economics, 59 (1999), 377-385.  doi: 10.1016/S0925-5273(98)00024-3.  Google Scholar

[9]

T. Iida, A non-stationary periodic review production-inventory model with uncertain production capacity and uncertain demand, European Journal of Operational Research, 140 (2002), 670-683.  doi: 10.1016/S0377-2217(01)00218-1.  Google Scholar

[10]

U. Juttner, Supply chain risk management: Understanding the business requirements from a practitioner perspective, International Journal of Logistics Management, 16 (2005), 120-141.  doi: 10.1108/09574090510617385.  Google Scholar

[11]

J. A. Kahn, Why is production more volatile than sales? Theory and evidence on the stockout-avoidance motive for inventory holding, Quarterly Journal of Economics, 107 (1992), 481-510.  doi: 10.2307/2118479.  Google Scholar

[12]

D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263-292.  doi: 10.2307/1914185.  Google Scholar

[13]

W. LiuS. SongB. Li and C. Wu, A periodic review inventory model with loss-averse retailer, random supply capacity and demand, International Journal of Production Research, 53 (2015), 3623-3634.  doi: 10.1080/00207543.2014.985391.  Google Scholar

[14]

W. LiuS. Song and C. Wu, Impact of loss aversion on the newsvendor game with product substitution, International Journal of Production Economics, 141 (2013), 352-359.  doi: 10.1016/j.ijpe.2012.08.017.  Google Scholar

[15]

W. LiuS. Song and C. Wu, The loss-averse newsvendor problem with random yield, Transactions of the Institute of Measurement and Control, 36 (2014), 312-320.  doi: 10.1177/0142331213497622.  Google Scholar

[16]

B. Masih-TehraniS. H. XuS. Kumara and H. Li, A single-period analysis of a two-echelon inventory system with dependent supply uncertainty, Transportation Research Part B, 45 (2011), 1128-1151.  doi: 10.1016/j.trb.2011.04.003.  Google Scholar

[17]

A. Norrman and U. Jansson, Ericsson's proactive supply chain risk management approach after a serious sub-supplier accident, International Journal of Physical Distribution & Logistics Management, 34 (2004), 434-456.  doi: 10.1108/09600030410545463.  Google Scholar

[18]

M. E. Schweitzer and G. P. Cachon, Decision bias in the newsvendor problem with a known demand distribution: experimental evidence, Management Science, 46 (2000), 404-420.  doi: 10.1287/mnsc.46.3.404.12070.  Google Scholar

[19]

D. A. Serel, Inventory and pricing decisions in a single-period problem involving risky supply, International Journal of Production Economics, 116 (2008), 115-128.  doi: 10.1016/j.ijpe.2008.07.012.  Google Scholar

[20]

H. C. ShenZ. Pang and T. C. E. Cheng, The component procurement problem for the loss-averse manufacturer with spot purchase, Journal of Production Economics, 132 (2011), 146-153.  doi: 10.1016/j.ijpe.2011.03.025.  Google Scholar

[21]

C. X. Wang, The loss-averse newsvendor game, International Journal of Production Economics, 124 (2010), 448-452.  doi: 10.1016/j.ijpe.2009.12.007.  Google Scholar

[22]

C. X. Wang and S. Webster, Channel coordination for a supply chain with a risk-neutral manufacturer and a loss-averse retailer, Decision Sciences, 38 (2007), 361-389.  doi: 10.1111/j.1540-5915.2007.00163.x.  Google Scholar

[23]

C. X. Wang and S. Webster, The loss-averse newsvendor problem, Omega-International Journal of Management Science, 37 (2009), 93-105.  doi: 10.1016/j.omega.2006.08.003.  Google Scholar

show all references

References:
[1]

S. Benartzi and R. H. Thaler, Myopic loss aversion and the equity premium puzzle, Quarterly Journal of Economics, 110 (1995), 73-92.  doi: 10.3386/w4369.  Google Scholar

[2]

X. ChaoH. Chen and S. Zheng, Joint replenishment and pricing decisions in inventory systems with stochastically dependent supply capacity, European Journal of Operational Research, 191 (2008), 142-155.  doi: 10.1016/j.ejor.2007.08.012.  Google Scholar

[3]

F. W. CiaralloR. Akella and T. E. Morton, A periodic review, production planning model with uncertain capacity and uncertain demand-optimality of extended myopic policies, Management Science, 40 (1994), 320-332.  doi: 10.1287/mnsc.40.3.320.  Google Scholar

[4]

M. DadaN. C. Petruzzi and L. B. Schwarz, A newsvendor's procurement problem when suppliers are unreliable, Manufacturing & Service Operations Management, 9 (2007), 9-32.  doi: 10.1287/msom.1060.0128.  Google Scholar

[5]

X. DengJ. Xie and H. Xiong, Manufacturer-retailer contracting with asymmetric information on retailer's degree of loss aversion, International Journal of Production Economics, 142 (2013), 372-380.  doi: 10.1016/j.ijpe.2012.12.013.  Google Scholar

[6]

M. A. Fisher and A. Raman, Reducing the cost of demand uncertainty through accurate response to early sales, Operations Research, 44 (1996), 87-99.  doi: 10.1287/opre.44.1.87.  Google Scholar

[7]

D. Genesove and C. Mayer, Loss aversion and seller behavior: Evidence from the housing market, Quarterly Journal of Economics, 116 (2001), 1233-1260.  doi: 10.3386/w8143.  Google Scholar

[8]

R. GulluE. Onol and N. Erkip, Analysis of an inventory system under supply uncertainty, International Journal of Production Economics, 59 (1999), 377-385.  doi: 10.1016/S0925-5273(98)00024-3.  Google Scholar

[9]

T. Iida, A non-stationary periodic review production-inventory model with uncertain production capacity and uncertain demand, European Journal of Operational Research, 140 (2002), 670-683.  doi: 10.1016/S0377-2217(01)00218-1.  Google Scholar

[10]

U. Juttner, Supply chain risk management: Understanding the business requirements from a practitioner perspective, International Journal of Logistics Management, 16 (2005), 120-141.  doi: 10.1108/09574090510617385.  Google Scholar

[11]

J. A. Kahn, Why is production more volatile than sales? Theory and evidence on the stockout-avoidance motive for inventory holding, Quarterly Journal of Economics, 107 (1992), 481-510.  doi: 10.2307/2118479.  Google Scholar

[12]

D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 47 (1979), 263-292.  doi: 10.2307/1914185.  Google Scholar

[13]

W. LiuS. SongB. Li and C. Wu, A periodic review inventory model with loss-averse retailer, random supply capacity and demand, International Journal of Production Research, 53 (2015), 3623-3634.  doi: 10.1080/00207543.2014.985391.  Google Scholar

[14]

W. LiuS. Song and C. Wu, Impact of loss aversion on the newsvendor game with product substitution, International Journal of Production Economics, 141 (2013), 352-359.  doi: 10.1016/j.ijpe.2012.08.017.  Google Scholar

[15]

W. LiuS. Song and C. Wu, The loss-averse newsvendor problem with random yield, Transactions of the Institute of Measurement and Control, 36 (2014), 312-320.  doi: 10.1177/0142331213497622.  Google Scholar

[16]

B. Masih-TehraniS. H. XuS. Kumara and H. Li, A single-period analysis of a two-echelon inventory system with dependent supply uncertainty, Transportation Research Part B, 45 (2011), 1128-1151.  doi: 10.1016/j.trb.2011.04.003.  Google Scholar

[17]

A. Norrman and U. Jansson, Ericsson's proactive supply chain risk management approach after a serious sub-supplier accident, International Journal of Physical Distribution & Logistics Management, 34 (2004), 434-456.  doi: 10.1108/09600030410545463.  Google Scholar

[18]

M. E. Schweitzer and G. P. Cachon, Decision bias in the newsvendor problem with a known demand distribution: experimental evidence, Management Science, 46 (2000), 404-420.  doi: 10.1287/mnsc.46.3.404.12070.  Google Scholar

[19]

D. A. Serel, Inventory and pricing decisions in a single-period problem involving risky supply, International Journal of Production Economics, 116 (2008), 115-128.  doi: 10.1016/j.ijpe.2008.07.012.  Google Scholar

[20]

H. C. ShenZ. Pang and T. C. E. Cheng, The component procurement problem for the loss-averse manufacturer with spot purchase, Journal of Production Economics, 132 (2011), 146-153.  doi: 10.1016/j.ijpe.2011.03.025.  Google Scholar

[21]

C. X. Wang, The loss-averse newsvendor game, International Journal of Production Economics, 124 (2010), 448-452.  doi: 10.1016/j.ijpe.2009.12.007.  Google Scholar

[22]

C. X. Wang and S. Webster, Channel coordination for a supply chain with a risk-neutral manufacturer and a loss-averse retailer, Decision Sciences, 38 (2007), 361-389.  doi: 10.1111/j.1540-5915.2007.00163.x.  Google Scholar

[23]

C. X. Wang and S. Webster, The loss-averse newsvendor problem, Omega-International Journal of Management Science, 37 (2009), 93-105.  doi: 10.1016/j.omega.2006.08.003.  Google Scholar

Figure 1.  A graphical presentation of demand and capacity outcomes
Figure 2.  Optimal order quantity vs loss aversion level for different levels of demand variation
Figure 3.  Value of $M(h, Q_0)$ vs shortage cost for different levels of demand variation
Figure 4.  Optimal order quantity vs selling price
Figure 5.  Optimal order quantity vs purchasing cost
[1]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[2]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[3]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[4]

Gaurav Nagpal, Udayan Chanda, Nitant Upasani. Inventory replenishment policies for two successive generations price-sensitive technology products. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021036

[5]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[6]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[7]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[8]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[9]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[10]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[11]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[12]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[13]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[14]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[15]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[16]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[17]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[18]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[19]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031

[20]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (62)
  • HTML views (456)
  • Cited by (2)

Other articles
by authors

[Back to Top]