• Previous Article
    Performance analysis of binary exponential backoff MAC protocol for cognitive radio in the IEEE 802.16e/m network
  • JIMO Home
  • This Issue
  • Next Article
    Cognitive radio networks with multiple secondary users under two kinds of priority schemes: Performance comparison and optimization
July  2017, 13(3): 1467-1481. doi: 10.3934/jimo.2017002

Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations

1. 

Department of Applied Mathematics, College of Science, Yanshan University, Qinhuangdao 066004, China

2. 

School of Transportation Science and Engineering, Beihang University, Beijing 100191, China

3. 

Department of Intelligence and Informatics, Konan University, Kobe 658-8501, Japan

The reviewing process of the paper was handled by Yutaka Takahashi as Guest Editor.

Received  September 2015 Published  December 2016

In this paper, we consider a discrete time Geo/Geo/1 repairable queueing system with a pseudo-fault, setup time, $N$-policy and multiple working vacations. We assume that the service interruption is caused by pseudo-fault or breakdown, and occurs only when the server is busy. If the pseudo-fault occurs, the server will enter into a vacation period instead of a busy period. At a breakdown instant, the repair period starts immediately and after repaired the server is assumed to be as good as new. Using a quasi birth-and-death chain, we establish a two-dimensional Markov chain. We obtain the distribution of the steady-state queue length by using a matrix-geometric solution method. Moreover, we analyze the considered queueing system and provide several performance indices of the system in steady-state. According to the queueing system, we first investigate the individual and social optimal behaviors of the customer. Then we propose a pricing policy to optimize the system socially, and study the Nash equilibrium and social optimization of the proposed strategy to determine the optimal expected parameters of the system. Finally, we present some numerical results to illustrate the effect of several parameters on the systems.

Citation: Zhanyou Ma, Pengcheng Wang, Wuyi Yue. Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1467-1481. doi: 10.3934/jimo.2017002
References:
[1]

A. Aissani and J. Artalejo, On the single server retrial queue subject to breakdowns, Queueing Systems, 30 (1998), 309-321.  doi: 10.1023/A:1019125323347.  Google Scholar

[2]

I. AtenciaI. FortesS. Nishimura and S. Sánchez, A discrete-time retrial queueing system with recurrent customers, Computers & Operations Research, 37 (2010), 1167-1173.  doi: MR2577277.  Google Scholar

[3]

I. AtenciaI. Fortes and S. Sánchez, A discrete-time retrial queueing system with starting failures, Bernoulli feedback and general retrial times, Computers & Industrial Engineering, 57 (2009), 1291-1299.  doi: 10.1016/j.cie.2009.06.011.  Google Scholar

[4]

I. Atencia and A. Pechinkin, A discrete-time queueing system with optional LCFS discipline, Annals of Operations Research, 202 (2013), 3-17.  doi: 10.1007/s10479-012-1097-2.  Google Scholar

[5]

B. Avi-Itzhak and P. Naor, Some queuing problems with the service station subject to breakdown, Operations Research, 11 (1963), 303-320.  doi: 10.1287/opre.11.3.303.  Google Scholar

[6]

Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations, Operations Research Letters, 33 (2005), 201-209.  doi: 10.1016/j.orl.2004.05.006.  Google Scholar

[7]

H. Bruneel, Performance of discrete-time queueing systems, Computers & Operations Research, 20 (1993), 303-320.  doi: 10.1016/0305-0548(93)90006-5.  Google Scholar

[8]

G. Choudhury, On a batch arrival Poisson queue with a random setup time and vacation period, Computers & Operations Research, 25 (1998), 1013-1026.  doi: 10.1016/S0305-0548(98)00038-0.  Google Scholar

[9]

C. Cramer, A seismic hazard uncertainty analysis for the New Madrid seismic zone, Engineering Geology, 62 (2001), 251-266.  doi: 10.1016/S0013-7952(01)00064-3.  Google Scholar

[10]

S. Gao and J. Wang, On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations, Journal of Industrial and Management Optimization, 11 (2015), 779-806.  doi: 10.3934/jimo.2015.11.779.  Google Scholar

[11]

V. Goswami and G. Mund, Analysis of discrete-time batch service renewal input queue with multiple working vacations, Computers & Industrial Engineering, 61 (2011), 629-636.  doi: 10.1016/j.cie.2011.04.018.  Google Scholar

[12]

R. Hassin and M. Haviv, Queue or not to Queue: Equilibrium Behavior in Queueing Systems Kluwer Academic Publishers, 2003. doi: 10.1007/978-1-4615-0359-0.  Google Scholar

[13]

D. Heyman, The T-policy for the M/G/1 queue, Management Science, 23 (1977), 775-778.   Google Scholar

[14]

K. KalidassJ. GnanarajS. Gopinath and R. Kasturi, Transient analysis of an M/M/1 queue with a repairable server and multiple vacations, International Journal of Mathematics in Operational Research, 6 (2014), 193-216.  doi: 10.1504/IJMOR.2014.059522.  Google Scholar

[15]

V. Kulkarni and B. Choi, Retrial queues with server subject to breakdowns and repairs, Queueing Systems, 7 (1990), 191-208.  doi: 10.1007/BF01158474.  Google Scholar

[16]

P. Laxmi and S. Demie, Performance analysis of renewal input $(a, c, b)$ policy queue with multiple working vacations and change over times, Journal of Industrial and Management Optimization, 10 (2014), 839-857.  doi: 10.3934/jimo.2014.10.839.  Google Scholar

[17]

P. LaxmiS. Indira and K. Jyothsna, Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging, Journal of Industrial and Management Optimization, 12 (2016), 1199-1214.  doi: 10.3934/jimo.2016.12.1199.  Google Scholar

[18]

J. LiN. Tian and M. Liu, Discrete-time GI/Geo/1 queue with multiple working vacations, Queueing Systems, 56 (2007), 53-63.  doi: 10.1007/s11134-007-9030-0.  Google Scholar

[19]

J. LiN. Tian and Z. Ma, Performance analysis of GI/M/1 queue with working vacations and vacation interruption, Applied Mathematical Modelling, 32 (2008), 2715-2730.  doi: 10.1016/j.apm.2007.09.017.  Google Scholar

[20]

D. LimD. LeeW. Yang and K. Chae, Analysis of the GI/Geo/1 queue with $N$-policy, Applied Mathematical Modelling, 37 (2013), 4643-4652.  doi: 10.1016/j.apm.2012.09.037.  Google Scholar

[21]

Z. MaP. WangG. Cui and Y. Hao, The discrete time Geom/Geom/1 repairable queuing system with pseudo-fault and multiple vacations, Journal of Information and Computational Science, 11 (2014), 4667-4678.   Google Scholar

[22]

Z. MaP. Wang and W. Yue, The pseudo-fault Geo/Geo/1 queue with setup time and multiple working vacation, Proceedings of the 10th International Conference on Queueing Theory and Network Applications, 383 (2015), 105-112.  doi: 10.1007/978-3-319-22267-7_10.  Google Scholar

[23]

T. Meisling, Discrete-time queuing theory, Operations Research, 6 (1958), 96-105.  doi: 10.1287/opre.6.1.96.  Google Scholar

[24]

S. Ndreca and B. Scoppola, Discrete time GI/Geom/1 queueing system with priority, European Journal of Operational Research, 189 (2008), 1403-1408.  doi: 10.1016/j.ejor.2007.02.056.  Google Scholar

[25]

M. Neuts, Matrix-geometric Solution in Stochastic Model: An Algorithmic Application, The Johns Hopkins University Press, 1981. Google Scholar

[26]

E. PapatheouG. MansonR. J. Barthorpe and K. Worden, The use of pseudo-faults for damage location in SHM: An experimental investigation on a Piper Tomahawk aircraft wing, Journal of Sound and Vibration, 333 (2014), 971-990.  doi: 10.1016/j.jsv.2013.10.013.  Google Scholar

[27]

L. Servi and S. Finn, M/M/1 queues with working vacations (M/M/1/WV), Performance Evaluation, 50 (2002), 41-52.  doi: 10.1016/S0166-5316(02)00057-3.  Google Scholar

[28]

W. SunH. Zhang and N. Tian, The discrete-time Geom/G/1 queue with multiple adaptive vacations and server setup/closedown times, International Journal of Management Science and Engineering Management, 2 (2007), 289-296.   Google Scholar

[29]

N. Tian and Z. Zhang, The discrete-time GI/Geo/1 queue with multiple vacations, Queueing Systems, 40 (2002), 283-294.  doi: 10.1023/A:1014711529740.  Google Scholar

[30]

R. TianD. Yue and W. Yue, Optimal balking strategies in an M/G/1 queueing system with a removable server under $N$-policy, Journal of Industrial and Management Optimization, 11 (2015), 715-731.  doi: 10.3934/jimo.2015.11.715.  Google Scholar

[31]

D. Towsley and S. Tripathi, A single server priority queue with server failures and queue flushing, Operations Research Letters, 10 (1991), 353-362.  doi: 10.1016/0167-6377(91)90008-D.  Google Scholar

[32]

C. WeiZ. Zou and Y. Qin, Discrete time Geom/G/1 queue with second optional service and server breakdowns, Fuzzy Engineering and Operations Research, 147 (2012), 557-568.  doi: 10.1007/978-3-642-28592-9_59.  Google Scholar

[33]

M. Yadin and P. Naor, Queueing systems with a removable service station, Operations Research Quarterly, 14 (1963), 393-405.   Google Scholar

[34]

Z. Zhang and N. Tian, Discrete time Geo/G/1 queue with multiple adaptive vacations, Queueing Systems, 38 (2001), 419-429.  doi: 10.1023/A:1010947911863.  Google Scholar

[35]

Z. Zhang and N. Tian, The $N$-threshold policy for the GI/M/1 queue, Operations Research Letters, 32 (2004), 77-84.  doi: 10.1016/S0167-6377(03)00067-1.  Google Scholar

show all references

The reviewing process of the paper was handled by Yutaka Takahashi as Guest Editor.

References:
[1]

A. Aissani and J. Artalejo, On the single server retrial queue subject to breakdowns, Queueing Systems, 30 (1998), 309-321.  doi: 10.1023/A:1019125323347.  Google Scholar

[2]

I. AtenciaI. FortesS. Nishimura and S. Sánchez, A discrete-time retrial queueing system with recurrent customers, Computers & Operations Research, 37 (2010), 1167-1173.  doi: MR2577277.  Google Scholar

[3]

I. AtenciaI. Fortes and S. Sánchez, A discrete-time retrial queueing system with starting failures, Bernoulli feedback and general retrial times, Computers & Industrial Engineering, 57 (2009), 1291-1299.  doi: 10.1016/j.cie.2009.06.011.  Google Scholar

[4]

I. Atencia and A. Pechinkin, A discrete-time queueing system with optional LCFS discipline, Annals of Operations Research, 202 (2013), 3-17.  doi: 10.1007/s10479-012-1097-2.  Google Scholar

[5]

B. Avi-Itzhak and P. Naor, Some queuing problems with the service station subject to breakdown, Operations Research, 11 (1963), 303-320.  doi: 10.1287/opre.11.3.303.  Google Scholar

[6]

Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations, Operations Research Letters, 33 (2005), 201-209.  doi: 10.1016/j.orl.2004.05.006.  Google Scholar

[7]

H. Bruneel, Performance of discrete-time queueing systems, Computers & Operations Research, 20 (1993), 303-320.  doi: 10.1016/0305-0548(93)90006-5.  Google Scholar

[8]

G. Choudhury, On a batch arrival Poisson queue with a random setup time and vacation period, Computers & Operations Research, 25 (1998), 1013-1026.  doi: 10.1016/S0305-0548(98)00038-0.  Google Scholar

[9]

C. Cramer, A seismic hazard uncertainty analysis for the New Madrid seismic zone, Engineering Geology, 62 (2001), 251-266.  doi: 10.1016/S0013-7952(01)00064-3.  Google Scholar

[10]

S. Gao and J. Wang, On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations, Journal of Industrial and Management Optimization, 11 (2015), 779-806.  doi: 10.3934/jimo.2015.11.779.  Google Scholar

[11]

V. Goswami and G. Mund, Analysis of discrete-time batch service renewal input queue with multiple working vacations, Computers & Industrial Engineering, 61 (2011), 629-636.  doi: 10.1016/j.cie.2011.04.018.  Google Scholar

[12]

R. Hassin and M. Haviv, Queue or not to Queue: Equilibrium Behavior in Queueing Systems Kluwer Academic Publishers, 2003. doi: 10.1007/978-1-4615-0359-0.  Google Scholar

[13]

D. Heyman, The T-policy for the M/G/1 queue, Management Science, 23 (1977), 775-778.   Google Scholar

[14]

K. KalidassJ. GnanarajS. Gopinath and R. Kasturi, Transient analysis of an M/M/1 queue with a repairable server and multiple vacations, International Journal of Mathematics in Operational Research, 6 (2014), 193-216.  doi: 10.1504/IJMOR.2014.059522.  Google Scholar

[15]

V. Kulkarni and B. Choi, Retrial queues with server subject to breakdowns and repairs, Queueing Systems, 7 (1990), 191-208.  doi: 10.1007/BF01158474.  Google Scholar

[16]

P. Laxmi and S. Demie, Performance analysis of renewal input $(a, c, b)$ policy queue with multiple working vacations and change over times, Journal of Industrial and Management Optimization, 10 (2014), 839-857.  doi: 10.3934/jimo.2014.10.839.  Google Scholar

[17]

P. LaxmiS. Indira and K. Jyothsna, Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging, Journal of Industrial and Management Optimization, 12 (2016), 1199-1214.  doi: 10.3934/jimo.2016.12.1199.  Google Scholar

[18]

J. LiN. Tian and M. Liu, Discrete-time GI/Geo/1 queue with multiple working vacations, Queueing Systems, 56 (2007), 53-63.  doi: 10.1007/s11134-007-9030-0.  Google Scholar

[19]

J. LiN. Tian and Z. Ma, Performance analysis of GI/M/1 queue with working vacations and vacation interruption, Applied Mathematical Modelling, 32 (2008), 2715-2730.  doi: 10.1016/j.apm.2007.09.017.  Google Scholar

[20]

D. LimD. LeeW. Yang and K. Chae, Analysis of the GI/Geo/1 queue with $N$-policy, Applied Mathematical Modelling, 37 (2013), 4643-4652.  doi: 10.1016/j.apm.2012.09.037.  Google Scholar

[21]

Z. MaP. WangG. Cui and Y. Hao, The discrete time Geom/Geom/1 repairable queuing system with pseudo-fault and multiple vacations, Journal of Information and Computational Science, 11 (2014), 4667-4678.   Google Scholar

[22]

Z. MaP. Wang and W. Yue, The pseudo-fault Geo/Geo/1 queue with setup time and multiple working vacation, Proceedings of the 10th International Conference on Queueing Theory and Network Applications, 383 (2015), 105-112.  doi: 10.1007/978-3-319-22267-7_10.  Google Scholar

[23]

T. Meisling, Discrete-time queuing theory, Operations Research, 6 (1958), 96-105.  doi: 10.1287/opre.6.1.96.  Google Scholar

[24]

S. Ndreca and B. Scoppola, Discrete time GI/Geom/1 queueing system with priority, European Journal of Operational Research, 189 (2008), 1403-1408.  doi: 10.1016/j.ejor.2007.02.056.  Google Scholar

[25]

M. Neuts, Matrix-geometric Solution in Stochastic Model: An Algorithmic Application, The Johns Hopkins University Press, 1981. Google Scholar

[26]

E. PapatheouG. MansonR. J. Barthorpe and K. Worden, The use of pseudo-faults for damage location in SHM: An experimental investigation on a Piper Tomahawk aircraft wing, Journal of Sound and Vibration, 333 (2014), 971-990.  doi: 10.1016/j.jsv.2013.10.013.  Google Scholar

[27]

L. Servi and S. Finn, M/M/1 queues with working vacations (M/M/1/WV), Performance Evaluation, 50 (2002), 41-52.  doi: 10.1016/S0166-5316(02)00057-3.  Google Scholar

[28]

W. SunH. Zhang and N. Tian, The discrete-time Geom/G/1 queue with multiple adaptive vacations and server setup/closedown times, International Journal of Management Science and Engineering Management, 2 (2007), 289-296.   Google Scholar

[29]

N. Tian and Z. Zhang, The discrete-time GI/Geo/1 queue with multiple vacations, Queueing Systems, 40 (2002), 283-294.  doi: 10.1023/A:1014711529740.  Google Scholar

[30]

R. TianD. Yue and W. Yue, Optimal balking strategies in an M/G/1 queueing system with a removable server under $N$-policy, Journal of Industrial and Management Optimization, 11 (2015), 715-731.  doi: 10.3934/jimo.2015.11.715.  Google Scholar

[31]

D. Towsley and S. Tripathi, A single server priority queue with server failures and queue flushing, Operations Research Letters, 10 (1991), 353-362.  doi: 10.1016/0167-6377(91)90008-D.  Google Scholar

[32]

C. WeiZ. Zou and Y. Qin, Discrete time Geom/G/1 queue with second optional service and server breakdowns, Fuzzy Engineering and Operations Research, 147 (2012), 557-568.  doi: 10.1007/978-3-642-28592-9_59.  Google Scholar

[33]

M. Yadin and P. Naor, Queueing systems with a removable service station, Operations Research Quarterly, 14 (1963), 393-405.   Google Scholar

[34]

Z. Zhang and N. Tian, Discrete time Geo/G/1 queue with multiple adaptive vacations, Queueing Systems, 38 (2001), 419-429.  doi: 10.1023/A:1010947911863.  Google Scholar

[35]

Z. Zhang and N. Tian, The $N$-threshold policy for the GI/M/1 queue, Operations Research Letters, 32 (2004), 77-84.  doi: 10.1016/S0167-6377(03)00067-1.  Google Scholar

Figure 1.  The schematic diagram for the model description
Figure 2.  The relation of $P_B$ to $\mu_v$ and $N$
Figure 3.  The relation of $E[L]$ to $p$ and $N$
Figure 4.  The relation of $E[L_q]$ to $\mu_b$ and $\beta$
Figure 5.  The relation of $P_{q2}$ to $p$ and $\alpha$
Figure 6.  Individual benefit $U_I$ versus arrival rate $p$
Figure 7.  Social benefit $U_S$ versus arrival rate $p$
Table 1.  The relation of $E[W]$ to $q$ and $\theta$
$\theta$The expected waiting time $E[W]$
$q=0$$q=0.05$$q=0.1$$q=0.15$$q=0.2$$q=0.25$$q=0.3$
0.320.20722.37924.62226.88529.14831.43033.798
0.519.94222.01924.14026.25028.31830.35132.396
0.719.84321.88423.95826.00928.00629.94731.875
$\theta$The expected waiting time $E[W]$
$q=0$$q=0.05$$q=0.1$$q=0.15$$q=0.2$$q=0.25$$q=0.3$
0.320.20722.37924.62226.88529.14831.43033.798
0.519.94222.01924.14026.25028.31830.35132.396
0.719.84321.88423.95826.00928.00629.94731.875
Table 2.  The relation of $E[L]$ to $\mu_b$ and $\gamma$
$\gamma$The expected queue length $E[L]$
$\mu_b=0.6$$\mu_b=0.65$$\mu_b=0.7$$\mu_b=0.75$$\mu_b=0.8$$\mu_b=0.85$$\mu_b=0.9$
0.432.13917.64514.18412.44911.38710.67310.165
0.615.06912.82011.56010.75710.2079.8099.508
0.813.10011.69710.83010.2509.8389.5299.288
$\gamma$The expected queue length $E[L]$
$\mu_b=0.6$$\mu_b=0.65$$\mu_b=0.7$$\mu_b=0.75$$\mu_b=0.8$$\mu_b=0.85$$\mu_b=0.9$
0.432.13917.64514.18412.44911.38710.67310.165
0.615.06912.82011.56010.75710.2079.8099.508
0.813.10011.69710.83010.2509.8389.5299.288
Table 3.  Comparison of individually and socially optimal arrival rate
Vacation parameter $\theta$Individually optimal arrival rate $p^e$Socially optimal arrival rate $p^*$
0.20.3480.204
0.40.3780.228
0.80.3920.240
Vacation parameter $\theta$Individually optimal arrival rate $p^e$Socially optimal arrival rate $p^*$
0.20.3480.204
0.40.3780.228
0.80.3920.240
Table 4.  Numerical results for admission fee
Vacation parameter $\theta$Socially maximum benefit $U_S^*$Admission fee $f$
0.228.726140.813
0.430.796135.071
0.833.101133.754
Vacation parameter $\theta$Socially maximum benefit $U_S^*$Admission fee $f$
0.228.726140.813
0.430.796135.071
0.833.101133.754
[1]

Kai Cai, Guangyue Han. An optimization approach to the Langberg-Médard multiple unicast conjecture. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021001

[2]

Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022

[3]

Bingru Zhang, Chuanye Gu, Jueyou Li. Distributed convex optimization with coupling constraints over time-varying directed graphs. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2119-2138. doi: 10.3934/jimo.2020061

[4]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[5]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[6]

Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021065

[7]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[8]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021035

[9]

Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021061

[10]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004

[11]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[12]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021099

[13]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[14]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2559-2599. doi: 10.3934/dcds.2020375

[15]

Guanwei Chen, Martin Schechter. Multiple solutions for Schrödinger lattice systems with asymptotically linear terms and perturbed terms. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021124

[16]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[17]

Sarra Delladji, Mohammed Belloufi, Badreddine Sellami. Behavior of the combination of PRP and HZ methods for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 377-389. doi: 10.3934/naco.2020032

[18]

Cheng Wang. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021019

[19]

Grace Nnennaya Ogwo, Chinedu Izuchukwu, Oluwatosin Temitope Mewomo. A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021011

[20]

Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021017

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (84)
  • HTML views (427)
  • Cited by (1)

Other articles
by authors

[Back to Top]