\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Artificial intelligence combined with nonlinear optimization techniques and their application for yield curve optimization

  • * Corresponding author: Roya Soltani

    * Corresponding author: Roya Soltani 
Abstract Full Text(HTML) Figure(10) / Table(7) Related Papers Cited by
  • This study makes use of the artificial intelligence approaches combined with some nonlinear optimization techniques for optimization of a well-known problem in financial engineering called yield curve. Yield curve estimation plays an important role on making strategic investment decisions. In this paper, we use two well-known parsimonious estimation models, Nelson-Siegel and Extended Nelson-Siegel, for the yield curve estimation. The proposed models of this paper are formulated as continuous nonlinear optimization problems. The resulted models are then solved using some nonlinear optimization and meta-heuristic approaches. The optimization techniques include hybrid GPSO parallel trust region-dog leg, Hybrid GPSO parallel trust region-nearly exact, Hybrid GPSO parallel Levenberg-Marquardt and Hybrid genetic electromagnetism like algorithm. The proposed models of this paper are examined using some real-world data from the bank of England and the results are analyzed.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  PSO solution space

    Figure 2.  EM solution space

    Figure 3.  Parallel trust regions

    Figure 4.  Dogleg trajectory

    Figure 5.  Interval plot for Extended Nelson-Siegel model

    Figure 6.  Interval plot for Nelson-Siegel model

    Figure 7.  Comparing the proposed methods regarding 12 sets of data taken from bank of England

    Figure 8.  Comparing the proposed methods regarding 12 sets of data taken from bank of England

    Figure 9.  Fitted models versus market data set 1

    Figure 10.  Fitted Extended Nelson-Siegel models resulted from HGPSOPLM versus market data

    Table 1.  Fitness Error

    Methods
    ModelsNelson-SiegelExtended Nelson-Siegel
    AverageStandard deviationAverage Time (in minutes)Average deviationStandardAverage Time (in minutes)
    HGEM0.1030290.0205781.6076080.0073070.0028065822.761143
    HGPSO0.1039760.019731.050980.0120250.0066134851.89916
    HGPSOPTR_NE0.1022080.02357729.18530.0048666670.00257340736.364
    HGPSOPTR_DL0.1021670.02367931.36810.0051083330.00287764437.85
    HGPSOPLM0.1025330.00636627.42750.0047833330.00264878535.74
     | Show Table
    DownLoad: CSV

    Table 2.  Parameter values for Extended Nelson-Siegel model

    Variables
    Methods $\beta_{0}$ $\beta_{1}$ $\beta_{2}$ $\beta_{3}$ $\tau_{1}$ $\tau_{2}$
    AverageStandard deviationAverageStandard deviationAverageStandard deviationAverageStandard deviationAverageStandard deviationAverageStandard deviation
    HGEM9.4960.384-8.9820.378-6.6560.142-12.3871.0312.4820.06123.9480.263
    HGPSO9.4700.350-8.9780.381-6.5850.035-11.7860.4712.4800.07824.2390.144
    HGPSOPTR-NE9.7961.007-9.3241.035-6.6880.549-13.3332.8832.5710.16224.6191.110
    HGPSOPTR-DL9.9170.849-9.4480.866-6.7380.531-13.6662.4422.5860.11724.4621.286
    HGPSOPLM9.9570.850-9.4910.873-6.7250.574-13.7962.4692.6040.11124.6101.119
     | Show Table
    DownLoad: CSV

    Table 3.  Parameter values for Nelson-Siegel model

    Variables
    Methods $\beta_{0}$ $\beta_{1}$ $\beta_{2}$ $\tau_{1}$
    AverageStandard deviationAverageStandard deviationAverageStandard deviationAverageStandard deviation
    HGEM5.28810.0004-3.80430.0053-5.47050.00931.51920.0013
    HGPSO5.24670.0919-4.52820.0732-5.22690.54621.65150.2967
    HGPSOPTR-NE5.03210.0581-4.34500.0458-4.14690.04222.24020.0073
    HGPSOPTR-DL5.00280.9806-4.31480.8265-4.08924.90732.2732.6319
    HGPSOPLM5.08320.0581-4.39760.0458-4.25170.04222.18240.0072
     | Show Table
    DownLoad: CSV

    Table 4.  Extended Nelson-Siegel Eigenvalues and Gradient norms

    MethodDataEigenvaluesGnorm
    Set1219.7177.2452.5300.04100.00090.0004
    Set2220.7527.1112.7480.0420.00010.0010.011
    Set3214.8486.9422.7330.04100.00090.006
    Set4188.9255.9993.5570.0460.0010.00060.026
    Set5198.8356.2543.1340.072-0.0050.0030.861
    Set6184.0565.8632.9290.0390.00020.00060.003
    HGPSOPTR-NESet7220.4116.6173.2330.04300.0020.041
    Set8201.8486.4902.7540.03900.00070.002
    Set9201.7826.4502.7120.047-0.0020.0020.299
    Set10192.9706.1122.9710.0400.00070.00010.002
    Set11192.5746.0873.0860.043-0.0010.0010.374
    Set12206.7786.6372.8960.0420.00010.00090.004
    Average203.6246.4842.9400.045-0.00050.00120.136
    Set1215.7817.0932.6240.04200.00090.009
    Set2217.8997.0742.6970.04200.00090.0008
    Set3210.8606.8062.8260.04200.00090.0137
    Set4208.0926.8042.7280.04100.00080.009
    Set5198.8356.2543.1340.072-0.0050.0030.861
    Set6180.2925.6333.2360.0420.00040.00070.009
    HGPSOPTR-DLSet7220.4116.6173.2330.04300.0020.041
    Set8216.1296.7063.0190.0410.00010.0020.014
    Set9194.5996.1782.8950.0390.00010.00070.007
    Set10195.8456.2642.8110.03900.00070.0121
    Set11195.0956.1532.9950.04000.00070.0002
    Set12207.9496.6822.8810.04200.00090.002
    Average205.1496.5222.9230.044-0.00040.0010.0815
    Set1225.2727.3322.5880.04200.0010.003
    Set2217.6867.0652.7090.04200.00090.005
    Set3212.3556.8632.7810.04200.00090.001
    Set4210.6916.9012.6840.04200.00080.004
    Set5198.8356.2543.1340.072-0.0050.0030.861
    Set6184.1615.8652.9330.0390.00020.00060.008
    HGPSOPLMSet7220.4116.6173.2330.04300.0020.041
    Set8201.9166.4942.7510.03900.00070.007
    Set9195.2456.2112.8680.03900.00070.003
    Set10192.976.1122.9710.040.00010.00070.002
    Set11192.5756.0883.0860.043-0.0010.0010.374
    Set12206.7346.6362.8950.04200.00090.002
    Average204.9046.5362.8860.044-0.00050.0010.109
     | Show Table
    DownLoad: CSV

    Table 5.  Nelson-Siegel Eigenvalues and Gradient norms

    MethodDataEigenvaluesGnorm
    Set 1166.47716.66453.3590.04990.0032
    Set 2168.94736.82363.35930.04980.0069
    Set 3167.37366.80913.35410.04890.0025
    Set 4166.06046.53573.36990.04940.0033
    Set 5161.83735.99443.40180.04820.0056
    Set 6144.29633.04160.32470.00130.005
    HGPSOPTR-NESet 7162.19935.9413.40660.04560.0081
    Set 8164.16126.24433.39040.04770.0105
    Set 9162.87066.11143.39420.04680.0054
    Set 10162.22955.99823.40650.04730.0022
    Set 11163.71366.21453.38850.04720.0009
    Set 12167.11936.62723.37020.04950.0005
    Average163.10716.08383.12710.04430.0045
    Set1166.47716.66453.3590.04990.0032
    Set2168.94736.82363.35930.04980.0069
    Set3167.37366.80913.35410.04890.0025
    Set4166.06046.53573.36990.04940.0033
    Set5161.83735.99443.40180.04820.0056
    Set6145.17372.98420.00110.31130.0065
    HGPSOPTR-DLSet7162.19935.9413.40660.04560.0081
    Set8164.16126.24433.39040.04770.0105
    Set9162.86996.11173.39420.04680.0035
    Set10162.22955.99823.40650.04730.0022
    Set11162.77225.75163.40690.021.969
    Set12167.11936.62723.37020.04950.0005
    Average163.10176.04053.10170.06790.1685
    Set1166.47716.66453.3590.04990.0032
    Set2168.94736.82363.35930.04980.0069
    Set3168.3686.80673.35430.04880.0066
    Set4166.06976.53613.36990.04930.0069
    Set5161.83735.99443.40180.04820.0056
    Set6142.60023.14830.0020.35150.0065
    HGPSOPLMSet7162.19935.9413.40660.04560.0081
    Set8164.16126.24433.39040.04770.0105
    Set9162.86996.11173.39420.04680.0035
    Set10162.22955.99823.40650.04730.0022
    Set11163.71366.21453.38850.04720.0009
    Set12167.11936.62723.37020.04950.0005
    Average163.04946.09253.10020.07350.0051
     | Show Table
    DownLoad: CSV

    Table 6.  Fitness Error for the Extended Nelson-Siegel model (Second quarter in 2015)

    AverageStandard deviationAverage Time (in minutes)
    HGEM0.0247590.0096743.0325
    HGPSO0.0394970.0073241.1797
    HGPSOPTR-NE0.0165410.01527135.3814
    HGPSOPTR-DL0.0198750.0170039.1531
    HGPSOPLM0.0157780.01423836.332
     | Show Table
    DownLoad: CSV

    Table 7.  Comparison between LM results with respect to random, yesterday and PSO results as initial conditions

    Random parameters as Initial conditionYesterday parameters estimation as Initial conditionPSO results as Initial condition
    DateFinal best valueFinal best valueFinal best value
    01/05/20080.5486-0.0368
    02/05/20080.05400.43620.0081
    06/05/20080.76400.52210.0489
    07/05/20080.05340.45980.0084
    08/05/20080.05360.62870.0144
    09/05/20080.05500.65780.0166
    12/05/20080.01260.72540.0672
    13/05/20080.07050.64650.0064
    14/05/20080.08250.49610.0037
    15/05/20080.10400.44680.0346
    16/05/20080.23650.71880.1200
    19/05/20080.38370.43850.0742
    20/05/20080.09140.49560.0023
    21/05/20080.27510.36310.1220
    22/05/20080.20990.29600.0838
    23/05/20080.25040.44760.1214
    27/05/20080.18630.39230.0768
    28/05/20080.21890.33140.0869
    29/05/20080.16620.16500.0880
    30/05/20080.16370.16910.0846
     | Show Table
    DownLoad: CSV
  • [1] I. Baki, Yield curve estimation by spline-based model, A thesis submitted to the Graduate school of Applied Mathematics of The Middle East Technical University, 2006.
    [2] M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, 3$^{rd}$ edition, John Wiley and Sons, 2006. doi: 10.1002/0471787779.
    [3] S. I. Birbil and S. C. Fang, An electromagnetism-like mechanism for global optimization, Journal of Global Optimization, 25 (2003), 263-282.  doi: 10.1023/A:1022452626305.
    [4] R. R. Bliss, Testing term structure estimation methods, Working Paper WP 96-12a, Federal Reserve Bank of Atlanta, 1996.
    [5] D. J. Bolder and D. Streliski, Yield Curve Modeling at the Bank of Canada, Technical Report TR 84, Bank of Canada, 1999.
    [6] M. Clerc and J. Kennedy, The particle swarm explosion stability and convergence in a multi dimensional complex space, IEEE Transactions on Evolutionary Computation, 6 (2001), 58-73. 
    [7] A. Csajbok, Zero-coupon yield curve estimation from a central bank perspective, Working Paper WP 1998-2, National Bank of Hungary, 1998.
    [8] F. X. Diebold and C. Li, Forecasting the term structure of government bond yields, Journal of Econometrics, 130 (2006), 337-364.  doi: 10.1016/j.jeconom.2005.03.005.
    [9] R. C. Eberhart and Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, Proceedings of the Congress on Evolutionary Computation, San Diego. CA, (2000), 84-88.  doi: 10.1109/CEC.2000.870279.
    [10] A. HanjooriM. Amiri and A. Alimi, Forecasting stock price using grey-fuzzy technique and portfolio optimization by invasive weed optimization algorithm, Decision Science Letters, 2 (2013), 175-184. 
    [11] M. Ioannides, A comparison of yield curve estimation techniques using UK data, Journal of Banking and Finance, 27 (2003), 1-26.  doi: 10.1016/S0378-4266(01)00217-5.
    [12] J. Kennedy and R. C. Eberhart, Particle swarm optimization, Proceeding of IEEE International Conference on Neural Networks, (1995), 1942-1948.  doi: 10.1109/ICNN.1995.488968.
    [13] P. Manousopoulos and M. Michalopoulos, A comparison of yield curve estimation methods: The Greek case, Journal of Financial Decision Making, 1 (2005), 33-46. 
    [14] P. Manousopoulos and M. Michalopoulos, Yield curve construction as a non-linear optimization problem, Proceedings of the 18th Hellenic Conference on Operations Research, 2006.
    [15] P. Manousopoulos and M. Michalopoulos, Comparison of non-linear optimization algorithms for yield curve estimation, European Journal of Operational Research, 192 (2009), 594-602.  doi: 10.1016/j.ejor.2007.09.017.
    [16] J. H. McCulloch, Measuring the term structure of interest rates, Journal of Business, 44 (1971), 19-31.  doi: 10.1086/295329.
    [17] J. H. McCulloch, The tax-adjusted yield curve, The Journal of Finance, 30 (1975), 811-830.  doi: 10.1111/j.1540-6261.1975.tb01852.x.
    [18] C. R. Nelson and A. F. Siegel, Parsimonious modeling of yield curves, The Journal of Business, 60 (1987), 473-489.  doi: 10.1086/296409.
    [19] J. Nocedal and S. J. Write, Numerical Optimization, Springer Science and Business Media, 2006. doi: MR2244940.
    [20] M. Orouji, Oil price shocks and stock market returns, Accounting, 2 (2016), 103-108.  doi: 10.5267/j.ac.2016.2.005.
    [21] M. Pooter, Examining the Nelson-Siegel Class of Term Structure Models, Tinbergen Institute, Discussion paper, 2007.
    [22] P. Soderlind and L. E. O. Svensson, New Techniques to Extract Market Expectations from Financial Instruments, Working Paper WP 5877, National Bureau of Economic Research, 1996. doi: 10.3386/w5877.
    [23] L. E. O. Svensson, Estimating and Interpreting Forward Interest Rates: Sweden 1992-1994, Working Paper WP 4871, National Bureau of EconomicResearch, (1994).  doi: 10.3386/w4871.
    [24] L. E. O. Svensson, Estimating forward interest rates with the Extended Nelson-Siegel method, Sveriges Riksbank Quarterly Review, 3 (1995), 13-26. 
  • 加载中

Figures(10)

Tables(7)

SHARE

Article Metrics

HTML views(853) PDF downloads(313) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return