• Previous Article
    A numerical scheme for pricing American options with transaction costs under a jump diffusion process
  • JIMO Home
  • This Issue
  • Next Article
    Minimization of the coefficient of variation for patient waiting system governed by a generic maximum waiting policy
October  2017, 13(4): 1771-1791. doi: 10.3934/jimo.2017018

Minimizing expected time to reach a given capital level before ruin

1. 

School of Sciences, Hebei University of Technology, Tianjin 300401, China

2. 

School of Mathematical Sciences, Nankai University, Tianjin 300071, China

* Corresponding author: Lihua Bai

Received  November 2015 Published  December 2016

Fund Project: The first author is supported by the National Natural Science Foundation of China (11571189),the project RARE -318984 (an FP7 Marie Curie IRSES) and High School National Science Foundation of Hebei Province (QN2016176), and the second author is supported by the National Natural Science Foundation of China (11471171).

In this paper, we consider the optimal investment and reinsurance problem for an insurance company where the claim process follows a Brownian motion with drift. The insurer can purchase proportional reinsurance and invest its surplus in one risky asset and one risk-free asset. The goal of the insurance company is to minimize the expected time to reach a given capital level before ruin. By using the Hamilton-Jacobi-Bellman equation approach, we obtain explicit expressions for the value function and the optimal strategy. We also provide some numerical examples to illustrate the results obtained in this paper, and analyze the sensitivity of the parameters.

Citation: Xiaoqing Liang, Lihua Bai. Minimizing expected time to reach a given capital level before ruin. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1771-1791. doi: 10.3934/jimo.2017018
References:
[1]

S. AsmussenB. Højgaard and M. Taksar, Optimal risk control and dividend distribution policies: Example of excess-of-loss reinsurance for an insurance corporation, Finance and Stochastics, 4 (2000), 299-324.  doi: 10.1007/s007800050075.

[2]

S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out, Insurance: Mathematics and Economics, 20 (1997), 1-15.  doi: 10.1016/S0167-6687(96)00017-0.

[3]

P. Azcue and N. Muler, Optimal reinsurance and dividend distribution policies in the Cramér-Lundberg model, Mathematical Finance, 15 (2005), 261-308.  doi: 10.1111/j.0960-1627.2005.00220.x.

[4]

L. Bai and J. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint, Insurance: Mathematics and Economics, 42 (2008), 968-975.  doi: 10.1016/j.insmatheco.2007.11.002.

[5]

S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Mathematics of Operations Research, 20 (1995), 937-958.  doi: 10.1287/moor.20.4.937.

[6]

L. Chen and H. Yang, Optimal reinsurance and investment strategy with two piece utility function Journal of Industrial and Management Optimization, 12 (2016). doi: 10.3934/jimo.2016044.

[7]

T. ChoulliM. Taksar and X. Zhou, A diffusion model for optimal dividend distribution for a company with constraints on risk control, SIAM Journal on Control and Optimization, 41 (2003), 1946-1979.  doi: 10.1137/S0363012900382667.

[8]

W. Fleming and H. Soner, Controlled Markov Processes and Viscosity Solutions, Springer Science & Business Media, 2006.

[9]

J. Grandell, Aspects of Risk Theory, Springer, 1991. doi: 10.1007/978-1-4613-9058-9.

[10]

B. Højgaard and M. Taksar, Controlling risk exposure and dividends pay-out schemes: Insurance company example, Mathematical Finance, 9 (1999), 153-182.  doi: 10.1111/1467-9965.00066.

[11]

B. Højgaard and M. Taksar, Optimal risk control for a large corporation in the presence of returns on investments, Finance and Stochastics, 5 (2001), 527-547.  doi: 10.1007/PL00000042.

[12]

B. Højgaard and M. Taksar, Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy, Quantitative Finance, 4 (2004), 315-327.  doi: 10.1088/1469-7688/4/3/007.

[13]

C. Irgens and J. Paulsen, Optimal control of risk exposure, reinsurance and investments for insurance portfolios, Insurance: Mathematics and Economics, 35 (2004), 21-51.  doi: 10.1016/j.insmatheco.2004.04.004.

[14]

Z. Liang and V. Young, Dividends and reinsurance under a penalty for ruin, Insurance: Mathematics and Economics, 50 (2012), 437-445.  doi: 10.1016/j.insmatheco.2012.02.005.

[15]

Z. Liang and K. Yuen, Optimal dynamic reinsurance with dependent risks: Variance premium principle, Scandinavian Actuarial Journal, 2016 (2016), 18-36.  doi: 10.1080/03461238.2014.892899.

[16]

S. LuoM. Wang and X. Zeng, Optimal reinsurance: Minimize the expected time to reach a goal, Scandinavian Actuarial Journal, 2016 (2015), 741-762.  doi: 10.1080/03461238.2015.1015161.

[17]

J. Paulsen, Optimal dividend payouts for diffusions with solvency constraints, Finance and Stochastics, 7 (2003), 457-473.  doi: 10.1007/s007800200098.

[18]

J. Paulsen and H. Gjessing, Optimal choice of dividend barriers for a risk process with stochastic return on investments, Insurance: Mathematics and Economics, 20 (1997), 215-223.  doi: 10.1016/S0167-6687(97)00011-5.

[19]

V. Pestien and W. Sudderth, Continuous-time red and black: how to control a diffusion to a goal, Mathematics of Operations Research, 10 (1985), 599-611.  doi: 10.1287/moor.10.4.599.

[20]

H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting, Scandinavian Actuarial Journal, 2001 (2001), 55-68.  doi: 10.1080/034612301750077338.

[21]

M. Taksar and C. Markussen, Optimal dynamic reinsurance policies for large insurance portfolios, Finance and Stochastics, 7 (2003), 97-121.  doi: 10.1007/s007800200073.

[22]

N. Wang, Optimal investment for an insurer with exponential utility preference, Insurance: Mathematics and Economics, 40 (2007), 77-84.  doi: 10.1016/j.insmatheco.2006.02.008.

[23]

H. Yang and L. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insurance: Mathematics and Economics, 37 (2005), 615-634.  doi: 10.1016/j.insmatheco.2005.06.009.

[24]

C. Yin and K. C. Yuen, Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs, Journal of Industrial and Management Optimization, 11 (2015), 1247-1262.  doi: 10.3934/jimo.2015.11.1247.

[25]

X. ZhangM. Zhou and J. Guo, Optimal combinational quota-share and excess-of-loss reinsurance policies in a dynamic setting, Applied Stochastic Models in Business and Industry, 23 (2007), 63-71.  doi: 10.1002/asmb.637.

[26]

M. Zhou and K. Yuen, Optimal reinsurance and dividend for a diffusion model with capital injection: Variance premium principle, Economic Modelling, 29 (2012), 198-207.  doi: 10.1016/j.econmod.2011.09.007.

show all references

References:
[1]

S. AsmussenB. Højgaard and M. Taksar, Optimal risk control and dividend distribution policies: Example of excess-of-loss reinsurance for an insurance corporation, Finance and Stochastics, 4 (2000), 299-324.  doi: 10.1007/s007800050075.

[2]

S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out, Insurance: Mathematics and Economics, 20 (1997), 1-15.  doi: 10.1016/S0167-6687(96)00017-0.

[3]

P. Azcue and N. Muler, Optimal reinsurance and dividend distribution policies in the Cramér-Lundberg model, Mathematical Finance, 15 (2005), 261-308.  doi: 10.1111/j.0960-1627.2005.00220.x.

[4]

L. Bai and J. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint, Insurance: Mathematics and Economics, 42 (2008), 968-975.  doi: 10.1016/j.insmatheco.2007.11.002.

[5]

S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Mathematics of Operations Research, 20 (1995), 937-958.  doi: 10.1287/moor.20.4.937.

[6]

L. Chen and H. Yang, Optimal reinsurance and investment strategy with two piece utility function Journal of Industrial and Management Optimization, 12 (2016). doi: 10.3934/jimo.2016044.

[7]

T. ChoulliM. Taksar and X. Zhou, A diffusion model for optimal dividend distribution for a company with constraints on risk control, SIAM Journal on Control and Optimization, 41 (2003), 1946-1979.  doi: 10.1137/S0363012900382667.

[8]

W. Fleming and H. Soner, Controlled Markov Processes and Viscosity Solutions, Springer Science & Business Media, 2006.

[9]

J. Grandell, Aspects of Risk Theory, Springer, 1991. doi: 10.1007/978-1-4613-9058-9.

[10]

B. Højgaard and M. Taksar, Controlling risk exposure and dividends pay-out schemes: Insurance company example, Mathematical Finance, 9 (1999), 153-182.  doi: 10.1111/1467-9965.00066.

[11]

B. Højgaard and M. Taksar, Optimal risk control for a large corporation in the presence of returns on investments, Finance and Stochastics, 5 (2001), 527-547.  doi: 10.1007/PL00000042.

[12]

B. Højgaard and M. Taksar, Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy, Quantitative Finance, 4 (2004), 315-327.  doi: 10.1088/1469-7688/4/3/007.

[13]

C. Irgens and J. Paulsen, Optimal control of risk exposure, reinsurance and investments for insurance portfolios, Insurance: Mathematics and Economics, 35 (2004), 21-51.  doi: 10.1016/j.insmatheco.2004.04.004.

[14]

Z. Liang and V. Young, Dividends and reinsurance under a penalty for ruin, Insurance: Mathematics and Economics, 50 (2012), 437-445.  doi: 10.1016/j.insmatheco.2012.02.005.

[15]

Z. Liang and K. Yuen, Optimal dynamic reinsurance with dependent risks: Variance premium principle, Scandinavian Actuarial Journal, 2016 (2016), 18-36.  doi: 10.1080/03461238.2014.892899.

[16]

S. LuoM. Wang and X. Zeng, Optimal reinsurance: Minimize the expected time to reach a goal, Scandinavian Actuarial Journal, 2016 (2015), 741-762.  doi: 10.1080/03461238.2015.1015161.

[17]

J. Paulsen, Optimal dividend payouts for diffusions with solvency constraints, Finance and Stochastics, 7 (2003), 457-473.  doi: 10.1007/s007800200098.

[18]

J. Paulsen and H. Gjessing, Optimal choice of dividend barriers for a risk process with stochastic return on investments, Insurance: Mathematics and Economics, 20 (1997), 215-223.  doi: 10.1016/S0167-6687(97)00011-5.

[19]

V. Pestien and W. Sudderth, Continuous-time red and black: how to control a diffusion to a goal, Mathematics of Operations Research, 10 (1985), 599-611.  doi: 10.1287/moor.10.4.599.

[20]

H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting, Scandinavian Actuarial Journal, 2001 (2001), 55-68.  doi: 10.1080/034612301750077338.

[21]

M. Taksar and C. Markussen, Optimal dynamic reinsurance policies for large insurance portfolios, Finance and Stochastics, 7 (2003), 97-121.  doi: 10.1007/s007800200073.

[22]

N. Wang, Optimal investment for an insurer with exponential utility preference, Insurance: Mathematics and Economics, 40 (2007), 77-84.  doi: 10.1016/j.insmatheco.2006.02.008.

[23]

H. Yang and L. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insurance: Mathematics and Economics, 37 (2005), 615-634.  doi: 10.1016/j.insmatheco.2005.06.009.

[24]

C. Yin and K. C. Yuen, Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs, Journal of Industrial and Management Optimization, 11 (2015), 1247-1262.  doi: 10.3934/jimo.2015.11.1247.

[25]

X. ZhangM. Zhou and J. Guo, Optimal combinational quota-share and excess-of-loss reinsurance policies in a dynamic setting, Applied Stochastic Models in Business and Industry, 23 (2007), 63-71.  doi: 10.1002/asmb.637.

[26]

M. Zhou and K. Yuen, Optimal reinsurance and dividend for a diffusion model with capital injection: Variance premium principle, Economic Modelling, 29 (2012), 198-207.  doi: 10.1016/j.econmod.2011.09.007.

Figure 1.  The minimal expected time and the associated optimal strategies for $\sigma=0.1$.
Figure 2.  The minimal expected time and the associated optimal strategies for $\sigma=0.01$.
Figure 3.  The minimal expected time and the associated optimal strategies for $b=0.03$.
Figure 4.  The minimal expected time and the associated optimal strategies for $b=0.3$.
Figure 5.  Expected time vs goal for $x=0.5$
[1]

Jean-Claude Zambrini. On the geometry of the Hamilton-Jacobi-Bellman equation. Journal of Geometric Mechanics, 2009, 1 (3) : 369-387. doi: 10.3934/jgm.2009.1.369

[2]

Bian-Xia Yang, Shanshan Gu, Guowei Dai. Existence and multiplicity for Hamilton-Jacobi-Bellman equation. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3767-3793. doi: 10.3934/cpaa.2021130

[3]

Steven Richardson, Song Wang. The viscosity approximation to the Hamilton-Jacobi-Bellman equation in optimal feedback control: Upper bounds for extended domains. Journal of Industrial and Management Optimization, 2010, 6 (1) : 161-175. doi: 10.3934/jimo.2010.6.161

[4]

Zhen-Zhen Tao, Bing Sun. A feedback design for numerical solution to optimal control problems based on Hamilton-Jacobi-Bellman equation. Electronic Research Archive, 2021, 29 (5) : 3429-3447. doi: 10.3934/era.2021046

[5]

Daniele Castorina, Annalisa Cesaroni, Luca Rossi. On a parabolic Hamilton-Jacobi-Bellman equation degenerating at the boundary. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1251-1263. doi: 10.3934/cpaa.2016.15.1251

[6]

Xuhui Wang, Lei Hu. A new method to solve the Hamilton-Jacobi-Bellman equation for a stochastic portfolio optimization model with boundary memory. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021137

[7]

Yin Li, Xuerong Mao, Yazhi Song, Jian Tao. Optimal investment and proportional reinsurance strategy under the mean-reverting Ornstein-Uhlenbeck process and net profit condition. Journal of Industrial and Management Optimization, 2022, 18 (1) : 75-93. doi: 10.3934/jimo.2020143

[8]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[9]

Lv Chen, Hailiang Yang. Optimal reinsurance and investment strategy with two piece utility function. Journal of Industrial and Management Optimization, 2017, 13 (2) : 737-755. doi: 10.3934/jimo.2016044

[10]

Xiaoyu Xing, Caixia Geng. Optimal investment-reinsurance strategy in the correlated insurance and financial markets. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021120

[11]

Shan Liu, Hui Zhao, Ximin Rong. Time-consistent investment-reinsurance strategy with a defaultable security under ambiguous environment. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1185-1222. doi: 10.3934/jimo.2021015

[12]

Xin Jiang, Kam Chuen Yuen, Mi Chen. Optimal investment and reinsurance with premium control. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2781-2797. doi: 10.3934/jimo.2019080

[13]

Federica Masiero. Hamilton Jacobi Bellman equations in infinite dimensions with quadratic and superquadratic Hamiltonian. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 223-263. doi: 10.3934/dcds.2012.32.223

[14]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations and Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

[15]

Fengjun Wang, Qingling Zhang, Bin Li, Wanquan Liu. Optimal investment strategy on advertisement in duopoly. Journal of Industrial and Management Optimization, 2016, 12 (2) : 625-636. doi: 10.3934/jimo.2016.12.625

[16]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

[17]

Pengxu Xie, Lihua Bai, Huayue Zhang. Optimal proportional reinsurance and pairs trading under exponential utility criterion for the insurer. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022020

[18]

Ka Chun Cheung, Hailiang Yang. Optimal investment-consumption strategy in a discrete-time model with regime switching. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 315-332. doi: 10.3934/dcdsb.2007.8.315

[19]

Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461

[20]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (345)
  • HTML views (405)
  • Cited by (1)

Other articles
by authors

[Back to Top]