
-
Previous Article
$\mathcal{H}_∞$ filtering for switched nonlinear systems: A state projection method
- JIMO Home
- This Issue
- Next Article
The optimal cash holding models for stochastic cash management of continuous time
1. | Dept. of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China |
2. | School of Economics and Management, Yancheng Institute of Technology, Yancheng 224056, China |
3. | Dept. of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, China |
4. | Southampton Statistical Sciences Research Institute and School of Mathematical Sciences, University of Southampton, SO17 1BJ, UK |
In business, enterprises need to maintain stable cash flows to meet the demands for payments in order to reduce the probability of possible bankruptcy. In this paper, we propose the optimal cash holding models in terms of continuous time and managers' risk preference in the framework of stochastic control theory in the setting of cash balance accounting with the interval of a safe area for cash holdings. Formulas for the optimal cash holdings are analytically derived with a widely used family of power utility functions. Our models can be seen as an extension of Miller-Orr model to solve the cash holding problem of continuous time from the accounting perspective. Numerical examples are also provided to illustrate the feasibility of the developed optimal cashing holding models of continuous time.
References:
[1] |
S. Baccarin,
Optimal impulse control for cash management with quadratic holding-penalty costs, Decis. Econ. Finance, 25 (2002), 19-32.
doi: 10.1007/s102030200001. |
[2] |
A. Bar-Ilan, Overdraft and the demand for money, Am. Econ. Rev., 80 (1990), 1201-1216. Google Scholar |
[3] |
A. Bar-Ilan, D. Perry and W. Stadje,
A generalized impulse control model of cash management, J. Econ. Dyn. Control, 28 (2004), 1013-1033.
doi: 10.1016/S0165-1889(03)00064-2. |
[4] |
A. Bar-Ilan and D. Lederman,
International reserves and monetary policy, Econ. Lett., 97 (2007), 170-178.
doi: 10.1016/j.econlet.2007.03.001. |
[5] |
W. Baumol, The transaction demand for cash -an inventory theoretic approach, Q. J. Econ., 66 (1952), 545-546. Google Scholar |
[6] |
A. Ben-Bassat and D. Gottlieb, Optimal international reserves and sovereign risk, J. Int. Econ., 33 (1992), 345-362. Google Scholar |
[7] |
A. Bensoussan, A. Chutani and S. P. Sethi,
Optimal cash managementunder uncertainty, Operations Research Letters, 37 (2009), 425-429.
doi: 10.1016/j.orl.2009.08.002. |
[8] |
F. Chang, Homogeneity and the transactions demand for money, J. Money Credit Bank., 31 (1999), 720-730. Google Scholar |
[9] |
H. G. Daellenbach, A stochastic cash balance model with two sources of short-term funds, Int. Econ. Rev., 12 (1971), 250-256. Google Scholar |
[10] |
H. G. Daellenbach, Daellenbach, H.G. Are cash management optimization models worthwhile?, J. Financ. Quant. Anal., 9 (1974), 607-626. Google Scholar |
[11] |
A. Dixit,
A simplied exposition of the theory of optimal control of Brownian motion, J. Econ. Dyn. Control, 15 (1991), 657-673.
doi: 10.1016/0165-1889(91)90037-2. |
[12] |
G. D. Eppen and E. Fama, Cash balance and simple dynamic portfolio problems with proportional costs, Int. Econ. Rev., 10 (1969), 119-133. Google Scholar |
[13] |
W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Berlin, New York, 2006.
doi: 10. 1007/978-0-387-26045-7. |
[14] |
J. Frenkel and B. Jovanovic, On transactions and precautionary demand for money, Q. J. Econ., 94 (1980), 24-43. Google Scholar |
[15] |
J. Frenkel and B. Jovanovic, Optimal international reserves: A stochastic framework, Econ. J., 91 (1981), 507-514. Google Scholar |
[16] |
N. Girgis, Optimal cash balance levels, Manage. Sci., 15 (1968), 130-140. Google Scholar |
[17] |
W. H. Hausman and A. Sanchez-Bell, The stochastic cash balance problem with average compensating-balance requirements, Manage. Sci., 21 (1975), 849-857. Google Scholar |
[18] |
I. Karatzas, J. P. Lehoczky, S.E. Shreve and G.L. Xu,
Martingale and duality for utility maximization in an incomplete market, SIAM J. Control and Optimization, 29 (1991), 702-730.
doi: 10.1137/0329039. |
[19] |
M. A. S. Melo and F. Bilich, Expectancy balance model for cash flow, Journal of Economics and Finance, 37 (2013), 240-252. Google Scholar |
[20] |
R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous time case, Review of Economics and Statistics, 51 (1969), 247-257. Google Scholar |
[21] |
R. C. Merton,
Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.
doi: 10.1016/0022-0531(71)90038-X. |
[22] |
R. Milbourne, Optimal money holding under uncertainty, Int. Econ. Rev., 24 (1983), 685-698. Google Scholar |
[23] |
M. Miller and D. Orr, A model of the demand for money by firms, Q. J. Econ., 81 (1966), 413-435. Google Scholar |
[24] |
M. B. C. Moraes and M. S. Nagano, Cash management policies by evolutionary models: A comparison using the Miller-Orr model, JISTEM, 10 (2013), 561-576. Google Scholar |
[25] |
D. Perry and W. Stadje,
Risk analysis for a stochastic cash management model with two types of customers, Insur. Math. Econ., 26 (2000), 25-36.
doi: 10.1016/S0167-6687(99)00037-2. |
[26] |
G. W. Smith, Transactions demand for money with a stochastic, time-varying interest rate, Rev. Econ. Stud., 56 (1989), 623-633. Google Scholar |
[27] |
N. Song, W. K. Ching, T. K. Siu and K. F. Yiu,
On optimal cash management under a stochastic volatility model, East Asian Journal on Applied Mathematics, 3 (2013), 81-92.
doi: 10.4208/eajam.070313.220413a. |
[28] |
J. Tobin, The interest elasticity of the transaction demand for cash, Rev. Econ. Stat., 38 (1956), 241-247. Google Scholar |
[29] |
R. G. Vickson, Simple optimal policy for cash management: The average balance requirement case, J. Financ. Quant. Anal., 20 (1985), 353-369. Google Scholar |
show all references
References:
[1] |
S. Baccarin,
Optimal impulse control for cash management with quadratic holding-penalty costs, Decis. Econ. Finance, 25 (2002), 19-32.
doi: 10.1007/s102030200001. |
[2] |
A. Bar-Ilan, Overdraft and the demand for money, Am. Econ. Rev., 80 (1990), 1201-1216. Google Scholar |
[3] |
A. Bar-Ilan, D. Perry and W. Stadje,
A generalized impulse control model of cash management, J. Econ. Dyn. Control, 28 (2004), 1013-1033.
doi: 10.1016/S0165-1889(03)00064-2. |
[4] |
A. Bar-Ilan and D. Lederman,
International reserves and monetary policy, Econ. Lett., 97 (2007), 170-178.
doi: 10.1016/j.econlet.2007.03.001. |
[5] |
W. Baumol, The transaction demand for cash -an inventory theoretic approach, Q. J. Econ., 66 (1952), 545-546. Google Scholar |
[6] |
A. Ben-Bassat and D. Gottlieb, Optimal international reserves and sovereign risk, J. Int. Econ., 33 (1992), 345-362. Google Scholar |
[7] |
A. Bensoussan, A. Chutani and S. P. Sethi,
Optimal cash managementunder uncertainty, Operations Research Letters, 37 (2009), 425-429.
doi: 10.1016/j.orl.2009.08.002. |
[8] |
F. Chang, Homogeneity and the transactions demand for money, J. Money Credit Bank., 31 (1999), 720-730. Google Scholar |
[9] |
H. G. Daellenbach, A stochastic cash balance model with two sources of short-term funds, Int. Econ. Rev., 12 (1971), 250-256. Google Scholar |
[10] |
H. G. Daellenbach, Daellenbach, H.G. Are cash management optimization models worthwhile?, J. Financ. Quant. Anal., 9 (1974), 607-626. Google Scholar |
[11] |
A. Dixit,
A simplied exposition of the theory of optimal control of Brownian motion, J. Econ. Dyn. Control, 15 (1991), 657-673.
doi: 10.1016/0165-1889(91)90037-2. |
[12] |
G. D. Eppen and E. Fama, Cash balance and simple dynamic portfolio problems with proportional costs, Int. Econ. Rev., 10 (1969), 119-133. Google Scholar |
[13] |
W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Berlin, New York, 2006.
doi: 10. 1007/978-0-387-26045-7. |
[14] |
J. Frenkel and B. Jovanovic, On transactions and precautionary demand for money, Q. J. Econ., 94 (1980), 24-43. Google Scholar |
[15] |
J. Frenkel and B. Jovanovic, Optimal international reserves: A stochastic framework, Econ. J., 91 (1981), 507-514. Google Scholar |
[16] |
N. Girgis, Optimal cash balance levels, Manage. Sci., 15 (1968), 130-140. Google Scholar |
[17] |
W. H. Hausman and A. Sanchez-Bell, The stochastic cash balance problem with average compensating-balance requirements, Manage. Sci., 21 (1975), 849-857. Google Scholar |
[18] |
I. Karatzas, J. P. Lehoczky, S.E. Shreve and G.L. Xu,
Martingale and duality for utility maximization in an incomplete market, SIAM J. Control and Optimization, 29 (1991), 702-730.
doi: 10.1137/0329039. |
[19] |
M. A. S. Melo and F. Bilich, Expectancy balance model for cash flow, Journal of Economics and Finance, 37 (2013), 240-252. Google Scholar |
[20] |
R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous time case, Review of Economics and Statistics, 51 (1969), 247-257. Google Scholar |
[21] |
R. C. Merton,
Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.
doi: 10.1016/0022-0531(71)90038-X. |
[22] |
R. Milbourne, Optimal money holding under uncertainty, Int. Econ. Rev., 24 (1983), 685-698. Google Scholar |
[23] |
M. Miller and D. Orr, A model of the demand for money by firms, Q. J. Econ., 81 (1966), 413-435. Google Scholar |
[24] |
M. B. C. Moraes and M. S. Nagano, Cash management policies by evolutionary models: A comparison using the Miller-Orr model, JISTEM, 10 (2013), 561-576. Google Scholar |
[25] |
D. Perry and W. Stadje,
Risk analysis for a stochastic cash management model with two types of customers, Insur. Math. Econ., 26 (2000), 25-36.
doi: 10.1016/S0167-6687(99)00037-2. |
[26] |
G. W. Smith, Transactions demand for money with a stochastic, time-varying interest rate, Rev. Econ. Stud., 56 (1989), 623-633. Google Scholar |
[27] |
N. Song, W. K. Ching, T. K. Siu and K. F. Yiu,
On optimal cash management under a stochastic volatility model, East Asian Journal on Applied Mathematics, 3 (2013), 81-92.
doi: 10.4208/eajam.070313.220413a. |
[28] |
J. Tobin, The interest elasticity of the transaction demand for cash, Rev. Econ. Stat., 38 (1956), 241-247. Google Scholar |
[29] |
R. G. Vickson, Simple optimal policy for cash management: The average balance requirement case, J. Financ. Quant. Anal., 20 (1985), 353-369. Google Scholar |



stock number | daily average yield | variance |
A | 0.000399 | 0.000437 |
B | 0.000433 | 0.000687 |
C | 0.000443 | 0.0019 |
D | 0.000463 | 0.00055 |
stock number | daily average yield | variance |
A | 0.000399 | 0.000437 |
B | 0.000433 | 0.000687 |
C | 0.000443 | 0.0019 |
D | 0.000463 | 0.00055 |
stock number | invest ratio | optimal cash holdings | |
A | 0.756891 | 1944.871 | 1944.871 |
B | 0.542302 | 3661.586 | 3661.586 |
C | 0.04379 | 7649.684 | 7000 |
D | 0.815414 | 1476.685 | 1476.685 |
stock number | invest ratio | optimal cash holdings | |
A | 0.756891 | 1944.871 | 1944.871 |
B | 0.542302 | 3661.586 | 3661.586 |
C | 0.04379 | 7649.684 | 7000 |
D | 0.815414 | 1476.685 | 1476.685 |
stock number | conversion ratio | | optimal cash holdings |
A | 0.124443 | 1944.8711 | 1944.8711 |
B | 0.383288 | 4326.2458 | 4326.2458 |
C | 0.770653 | 7890.0104 | 7000 |
D | 0.163794 | 2306.9047 | 2306.9047 |
stock number | conversion ratio | | optimal cash holdings |
A | 0.124443 | 1944.8711 | 1944.8711 |
B | 0.383288 | 4326.2458 | 4326.2458 |
C | 0.770653 | 7890.0104 | 7000 |
D | 0.163794 | 2306.9047 | 2306.9047 |
p | invest ratio | | optimal cash holdings |
0.1 | 0.04379 | 7649.684 | 7000 |
0.2 | 0.04672 | 7626.262 | 7000 |
0.3 | 0.08911 | 7287.156 | 7000 |
0.4 | 0.14562 | 6835.016 | 6835 |
0.5 | 0.22475 | 6202.019 | 6202 |
0.6 | 0.34344 | 5252.523 | 5252 |
0.7 | 0.54125 | 3670.031 | 3670 |
0.8 | 0.93687 | 505.047 | 1000 |
0.9 | 2.12374 | -8989.91 | 1000 |
p | invest ratio | | optimal cash holdings |
0.1 | 0.04379 | 7649.684 | 7000 |
0.2 | 0.04672 | 7626.262 | 7000 |
0.3 | 0.08911 | 7287.156 | 7000 |
0.4 | 0.14562 | 6835.016 | 6835 |
0.5 | 0.22475 | 6202.019 | 6202 |
0.6 | 0.34344 | 5252.523 | 5252 |
0.7 | 0.54125 | 3670.031 | 3670 |
0.8 | 0.93687 | 505.047 | 1000 |
0.9 | 2.12374 | -8989.91 | 1000 |
[1] |
Mourad Azi, Mohand Ouamer Bibi. Optimal control of a dynamical system with intermediate phase constraints and applications in cash management. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021005 |
[2] |
Yukang He, Zhengwen He, Nengmin Wang. Tabu search and simulated annealing for resource-constrained multi-project scheduling to minimize maximal cash flow gap. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020077 |
[3] |
Jiongmin Yong. Time-inconsistent optimal control problems and the equilibrium HJB equation. Mathematical Control & Related Fields, 2012, 2 (3) : 271-329. doi: 10.3934/mcrf.2012.2.271 |
[4] |
Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control & Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651 |
[5] |
Luis F. Gordillo. Optimal sterile insect release for area-wide integrated pest management in a density regulated pest population. Mathematical Biosciences & Engineering, 2014, 11 (3) : 511-521. doi: 10.3934/mbe.2014.11.511 |
[6] |
Huai-Nian Zhu, Cheng-Ke Zhang, Zhuo Jin. Continuous-time mean-variance asset-liability management with stochastic interest rates and inflation risks. Journal of Industrial & Management Optimization, 2020, 16 (2) : 813-834. doi: 10.3934/jimo.2018180 |
[7] |
Laura Caravenna. Regularity estimates for continuous solutions of α-convex balance laws. Communications on Pure & Applied Analysis, 2017, 16 (2) : 629-644. doi: 10.3934/cpaa.2017031 |
[8] |
Ellen Baake, Michael Baake, Majid Salamat. The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 63-95. doi: 10.3934/dcds.2016.36.63 |
[9] |
Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195 |
[10] |
Hui Meng, Fei Lung Yuen, Tak Kuen Siu, Hailiang Yang. Optimal portfolio in a continuous-time self-exciting threshold model. Journal of Industrial & Management Optimization, 2013, 9 (2) : 487-504. doi: 10.3934/jimo.2013.9.487 |
[11] |
Ellen Baake, Michael Baake, Majid Salamat. Erratum and addendum to: The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2365-2366. doi: 10.3934/dcds.2016.36.2365 |
[12] |
Andrei V. Dmitruk, Nikolai P. Osmolovskii. Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4323-4343. doi: 10.3934/dcds.2015.35.4323 |
[13] |
Andrei V. Dmitruk, Nikolai P. Osmolovski. Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Mathematical Control & Related Fields, 2017, 7 (4) : 507-535. doi: 10.3934/mcrf.2017019 |
[14] |
Dušan M. Stipanović, Christopher Valicka, Claire J. Tomlin, Thomas R. Bewley. Safe and reliable coverage control. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 31-48. doi: 10.3934/naco.2013.3.31 |
[15] |
Andrew J. Whittle, Suzanne Lenhart, Louis J. Gross. Optimal control for management of an invasive plant species. Mathematical Biosciences & Engineering, 2007, 4 (1) : 101-112. doi: 10.3934/mbe.2007.4.101 |
[16] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[17] |
Haixiang Yao, Zhongfei Li, Xun Li, Yan Zeng. Optimal Sharpe ratio in continuous-time markets with and without a risk-free asset. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1273-1290. doi: 10.3934/jimo.2016072 |
[18] |
Baojun Bian, Shuntai Hu, Quan Yuan, Harry Zheng. Constrained viscosity solution to the HJB equation arising in perpetual American employee stock options pricing. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5413-5433. doi: 10.3934/dcds.2015.35.5413 |
[19] |
Giovanni Forni. The cohomological equation for area-preserving flows on compact surfaces. Electronic Research Announcements, 1995, 1: 114-123. |
[20] |
Nataliia V. Gorban, Olha V. Khomenko, Liliia S. Paliichuk, Alla M. Tkachuk. Long-time behavior of state functions for climate energy balance model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1887-1897. doi: 10.3934/dcdsb.2017112 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]