January  2018, 14(1): 19-33. doi: 10.3934/jimo.2017035

$\mathcal{H}_∞$ filtering for switched nonlinear systems: A state projection method

1. 

School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621000, China

2. 

Mianyang Polytechnic, Mianyang 621000, China

* Corresponding author: Lin Du

Received  April 2015 Revised  February 2017 Published  January 2018 Early access  April 2017

Fund Project: This work was supported by the National Natural Science Foundation of China under Grant No. 61603312.

In this paper, the $\mathcal{H}_∞$ filtering problem of switched nonlinear system with linear hyper plane switching surface is investigated. A state projection method is introduced to ensure the stability of error system and guarantee a prescribed disturbance attenuation level in the $\mathcal{H}_∞$ sense, by designing filter gains for each subsystem via solving a set of LMIs and formulating a state projection relation for filter state at switching instant. It is worthwhile to note that the state projection relation is deduced by both Lyapunov functions and the switching surface, which implies the state projection method is suitable for switched system with linear hyper plane switching surface. Finally, a numerical example is provided to illustrate our theoretic findings in this paper.

Citation: Lin Du, Yun Zhang. $\mathcal{H}_∞$ filtering for switched nonlinear systems: A state projection method. Journal of Industrial and Management Optimization, 2018, 14 (1) : 19-33. doi: 10.3934/jimo.2017035
References:
[1]

A. BalluchiM. D. BenedettoC. PinelloC. Rossi and A. Sangiovanni-Vincentelli, Cut-off in engine control: A hybrid system approach, Proceedings of the 36th IEEE Conference on Decision and Control, 5 (1997), 4720-4725.  doi: 10.1109/CDC.1997.649753.

[2]

B. E. Bishop and M. W. Spong, Control of redundant manipulators using logic-based switching, Proceedings of the 36th IEEE Conference on Decision and Control, 2 (1998), 16-18.  doi: 10.1109/CDC.1998.758498.

[3]

M. S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Transactions on Automatic Control, 43 (1998), 475-482.  doi: 10.1109/9.664150.

[4]

J. CaiC. WenH. Su and Z. Liu, Robust adaptive failure compensation of hysteretic actuators for a class of uncertain nonlinear systems, IEEE Transactions on Automatic Control, 58 (2013), 2388-2394.  doi: 10.1109/TAC.2013.2251795.

[5]

Y. Chen and W. X. Zheng, Stochastic state estimation for neural networks with distributed delays and Markovian jump, Neural Networks, 25 (2012), 14-20.  doi: 10.1016/j.neunet.2011.08.002.

[6]

D. DuB. JiangP. Shi and S. Zhou, H filtering of discrete-time switched systems with state delays via switched Lyapunov function approach, IEEE Transactions on Automatic Control, 52 (2007), 1520-1524.  doi: 10.1109/TAC.2007.902777.

[7]

A. Elsayed and M. Grimble, A new approach to design for optimal digital linear filters, IMA J. Math. Control Inf, 6 (1989), 233-251.  doi: 10.1093/imamci/6.2.233.

[8]

J. P. HespanhaD. Liberzon and A. S. Morse, Stability of switched systems with average dwell time, Proceedings of 38th Conference on Decision and Control, (1999), 2655-2660.  doi: 10.1109/CDC.1999.831330.

[9]

K. Hu and J. Yuan, Improved robust H filtering for uncertain discrete-time switched systems, IET Control Theory Applications, 3 (2009), 315-324.  doi: 10.1049/iet-cta:20070253.

[10]

D. Koenig and B. Marx, H filtering and state feedback control for discrete-time switched descriptor systems, IET Control Theory Applications, 3 (2009), 661-670.  doi: 10.1049/iet-cta.2008.0132.

[11]

D. LeithR. ShortenW. Leithead and O. Mason, Issue in the design of switched linear control systems: A benchmark study, International Journal of Adaptive Control, 17 (2003), 103-118.  doi: 10.1002/acs.741.

[12]

H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Transactions on Automatic Control, 54 (2009), 308-322.  doi: 10.1109/TAC.2008.2012009.

[13]

R. LuB. Lou and A.-K. Xue, Mode-dependent quantised $H_∞$ filtering for Markovian jump singular system, International Journal of Systems Science, 46 (2015), 1817-1824.  doi: 10.1080/00207721.2013.837539.

[14]

A. S. Morse, Supervisory control of families of linear set-point controllers, part 1: Exact matching, IEEE Transactions on Automatic Control, 41 (1996), 1413-1431.  doi: 10.1109/9.539424.

[15]

K. S. Narendra and J. A. Balakrishnan, Common Lyapunov function for stable LTI systems with commuting A-matrices, IEEE Transactions on Automatic Control, 39 (1994), 2469-2471.  doi: 10.1109/9.362846.

[16]

P. ShiM. Mahmoud and S. Nguang, Robust filtering for jumping systems with modedependent delays, Signal Process, 86 (2006), 140-152.  doi: 10.1016/j.sigpro.2005.05.005.

[17]

Y. TangH. GaoW. Zou and J. Kurths, Distributed synchronization in networks of agent systems with nonlinearities and random switchings, IEEE Transactions On Cybernetics, 43 (2013), 358-370.  doi: 10.1109/TSMCB.2012.2207718.

[18]

W. XiangJ. Xiao and N. Iqbal, Robust observer design for nonlinear uncertain switched systems under asynchronous switching, Nonlinear Analysis: Hybrid Systems, 6 (2012), 754-773.  doi: 10.1016/j.nahs.2011.08.001.

[19]

W. Xiang and J. Xiao, H filtering for switched nonlinear systems under asynchronous switching, International Journal of System Science, 42 (2011), 751-765.  doi: 10.1080/00207721.2010.488763.

[20]

W. XiangJ. Xiao and M. N. Iqbal, Fault detection for switched nonlinear systems under asynchronous switching, International Journal of Control, 84 (2011), 1362-1376.  doi: 10.1080/00207179.2011.598191.

[21]

W. Xiang and J. Xiao, Stabilization of switched continuous-time system with all modes unstable via dwell time switching, Automatica, 50 (2014), 940-945.  doi: 10.1016/j.automatica.2013.12.028.

[22]

Z. XiangC. Liang and M. S. Mahmoud, Robust L2L filtering for switched time-delay systems with missing measurements, Circuits, Systems, and Signal Processing, 31 (2012), 1677-1697.  doi: 10.1007/s00034-012-9396-z.

[23]

Z. XiangC. Qiao and S. Mahmoud, Robust H filtering for switched stochastic systems under asynchronous switching, Journal of the Franklin Institute, 349 (2012), 1213-1230.  doi: 10.1016/j.jfranklin.2012.01.008.

[24]

Z. XiangC. Liang and Q. Chen, Robust L2L filtering for switched systems under asynchronous switching, Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 3303-3318.  doi: 10.1016/j.cnsns.2010.10.029.

[25]

D. XieL. Wang and F. Hao, Robust stability analysis and control synthesis for discrete-time uncertain switched systems, Proceedings of Conference on Decision and Control, (2003), 4812-4817. 

[26]

S. XuJ. Lam and Y. Zou, H filtering for singular systems, IEEE Transactions on Automatic Control, 48 (2003), 2217-2222.  doi: 10.1109/TAC.2003.820149.

[27]

G. S. ZhaiB. HuK. Yasuda and A. N. Michel, Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach, Proceedings of the American Control Conference, (2000), 200-204.  doi: 10.1109/ACC.2000.878825.

[28]

B. Zhang and S. Xu, Robust $H_∞$ filtering for uncertain discrete piecewise time-delay systems, International Journal of Control, 80 (2007), 636-645.  doi: 10.1080/00207170601131982.

[29]

W. ZhangM. S. Branicky and S. M. Phillips, Stability of networked control systems, IEEE Control Systems Magazine, 21 (2001), 84-99.  doi: 10.1109/37.898794.

show all references

References:
[1]

A. BalluchiM. D. BenedettoC. PinelloC. Rossi and A. Sangiovanni-Vincentelli, Cut-off in engine control: A hybrid system approach, Proceedings of the 36th IEEE Conference on Decision and Control, 5 (1997), 4720-4725.  doi: 10.1109/CDC.1997.649753.

[2]

B. E. Bishop and M. W. Spong, Control of redundant manipulators using logic-based switching, Proceedings of the 36th IEEE Conference on Decision and Control, 2 (1998), 16-18.  doi: 10.1109/CDC.1998.758498.

[3]

M. S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Transactions on Automatic Control, 43 (1998), 475-482.  doi: 10.1109/9.664150.

[4]

J. CaiC. WenH. Su and Z. Liu, Robust adaptive failure compensation of hysteretic actuators for a class of uncertain nonlinear systems, IEEE Transactions on Automatic Control, 58 (2013), 2388-2394.  doi: 10.1109/TAC.2013.2251795.

[5]

Y. Chen and W. X. Zheng, Stochastic state estimation for neural networks with distributed delays and Markovian jump, Neural Networks, 25 (2012), 14-20.  doi: 10.1016/j.neunet.2011.08.002.

[6]

D. DuB. JiangP. Shi and S. Zhou, H filtering of discrete-time switched systems with state delays via switched Lyapunov function approach, IEEE Transactions on Automatic Control, 52 (2007), 1520-1524.  doi: 10.1109/TAC.2007.902777.

[7]

A. Elsayed and M. Grimble, A new approach to design for optimal digital linear filters, IMA J. Math. Control Inf, 6 (1989), 233-251.  doi: 10.1093/imamci/6.2.233.

[8]

J. P. HespanhaD. Liberzon and A. S. Morse, Stability of switched systems with average dwell time, Proceedings of 38th Conference on Decision and Control, (1999), 2655-2660.  doi: 10.1109/CDC.1999.831330.

[9]

K. Hu and J. Yuan, Improved robust H filtering for uncertain discrete-time switched systems, IET Control Theory Applications, 3 (2009), 315-324.  doi: 10.1049/iet-cta:20070253.

[10]

D. Koenig and B. Marx, H filtering and state feedback control for discrete-time switched descriptor systems, IET Control Theory Applications, 3 (2009), 661-670.  doi: 10.1049/iet-cta.2008.0132.

[11]

D. LeithR. ShortenW. Leithead and O. Mason, Issue in the design of switched linear control systems: A benchmark study, International Journal of Adaptive Control, 17 (2003), 103-118.  doi: 10.1002/acs.741.

[12]

H. Lin and P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Transactions on Automatic Control, 54 (2009), 308-322.  doi: 10.1109/TAC.2008.2012009.

[13]

R. LuB. Lou and A.-K. Xue, Mode-dependent quantised $H_∞$ filtering for Markovian jump singular system, International Journal of Systems Science, 46 (2015), 1817-1824.  doi: 10.1080/00207721.2013.837539.

[14]

A. S. Morse, Supervisory control of families of linear set-point controllers, part 1: Exact matching, IEEE Transactions on Automatic Control, 41 (1996), 1413-1431.  doi: 10.1109/9.539424.

[15]

K. S. Narendra and J. A. Balakrishnan, Common Lyapunov function for stable LTI systems with commuting A-matrices, IEEE Transactions on Automatic Control, 39 (1994), 2469-2471.  doi: 10.1109/9.362846.

[16]

P. ShiM. Mahmoud and S. Nguang, Robust filtering for jumping systems with modedependent delays, Signal Process, 86 (2006), 140-152.  doi: 10.1016/j.sigpro.2005.05.005.

[17]

Y. TangH. GaoW. Zou and J. Kurths, Distributed synchronization in networks of agent systems with nonlinearities and random switchings, IEEE Transactions On Cybernetics, 43 (2013), 358-370.  doi: 10.1109/TSMCB.2012.2207718.

[18]

W. XiangJ. Xiao and N. Iqbal, Robust observer design for nonlinear uncertain switched systems under asynchronous switching, Nonlinear Analysis: Hybrid Systems, 6 (2012), 754-773.  doi: 10.1016/j.nahs.2011.08.001.

[19]

W. Xiang and J. Xiao, H filtering for switched nonlinear systems under asynchronous switching, International Journal of System Science, 42 (2011), 751-765.  doi: 10.1080/00207721.2010.488763.

[20]

W. XiangJ. Xiao and M. N. Iqbal, Fault detection for switched nonlinear systems under asynchronous switching, International Journal of Control, 84 (2011), 1362-1376.  doi: 10.1080/00207179.2011.598191.

[21]

W. Xiang and J. Xiao, Stabilization of switched continuous-time system with all modes unstable via dwell time switching, Automatica, 50 (2014), 940-945.  doi: 10.1016/j.automatica.2013.12.028.

[22]

Z. XiangC. Liang and M. S. Mahmoud, Robust L2L filtering for switched time-delay systems with missing measurements, Circuits, Systems, and Signal Processing, 31 (2012), 1677-1697.  doi: 10.1007/s00034-012-9396-z.

[23]

Z. XiangC. Qiao and S. Mahmoud, Robust H filtering for switched stochastic systems under asynchronous switching, Journal of the Franklin Institute, 349 (2012), 1213-1230.  doi: 10.1016/j.jfranklin.2012.01.008.

[24]

Z. XiangC. Liang and Q. Chen, Robust L2L filtering for switched systems under asynchronous switching, Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 3303-3318.  doi: 10.1016/j.cnsns.2010.10.029.

[25]

D. XieL. Wang and F. Hao, Robust stability analysis and control synthesis for discrete-time uncertain switched systems, Proceedings of Conference on Decision and Control, (2003), 4812-4817. 

[26]

S. XuJ. Lam and Y. Zou, H filtering for singular systems, IEEE Transactions on Automatic Control, 48 (2003), 2217-2222.  doi: 10.1109/TAC.2003.820149.

[27]

G. S. ZhaiB. HuK. Yasuda and A. N. Michel, Stability analysis of switched systems with stable and unstable subsystems: An average dwell time approach, Proceedings of the American Control Conference, (2000), 200-204.  doi: 10.1109/ACC.2000.878825.

[28]

B. Zhang and S. Xu, Robust $H_∞$ filtering for uncertain discrete piecewise time-delay systems, International Journal of Control, 80 (2007), 636-645.  doi: 10.1080/00207170601131982.

[29]

W. ZhangM. S. Branicky and S. M. Phillips, Stability of networked control systems, IEEE Control Systems Magazine, 21 (2001), 84-99.  doi: 10.1109/37.898794.

Figure 1.  Illustration of state projection approach
Figure 2.  Illustration of projection of filter state
Figure 3.  State response of $x_1 (-)$ and $x_2 (\cdots)$
Figure 4.  State response of $\hat x_1 (-)$ and $\hat x_2 (\cdots)$
Figure 5.  Response of $z (-)$ and $\hat z (\cdots)$
Figure 6.  Response of $\tilde z = z-\hat z$
[1]

Xingyue Liang, Jianwei Xia, Guoliang Chen, Huasheng Zhang, Zhen Wang. $ \mathcal{H}_{\infty} $ control for fuzzy markovian jump systems based on sampled-data control method. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1329-1343. doi: 10.3934/dcdss.2020368

[2]

Jordi-Lluís Figueras, Thomas Ohlson Timoudas. Sharp $ \frac12 $-Hölder continuity of the Lyapunov exponent at the bottom of the spectrum for a class of Schrödinger cocycles. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4519-4531. doi: 10.3934/dcds.2020189

[3]

Yasemin Cengellenmis, Abdullah Dertli, Steven T. Dougherty, Adrian Korban, Serap Şahinkaya, Deniz Ustun. Reversible $ G $-codes over the ring $ {\mathcal{F}}_{j,k} $ with applications to DNA codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021056

[4]

Canghua Jiang, Dongming Zhang, Chi Yuan, Kok Ley Teo. An active set solver for constrained $ H_\infty $ optimal control problems with state and input constraints. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 135-157. doi: 10.3934/naco.2021056

[5]

Ruoci Sun. Filtering the $ L^2- $critical focusing Schrödinger equation. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5973-5990. doi: 10.3934/dcds.2020255

[6]

Monica Motta, Caterina Sartori. On ${\mathcal L}^1$ limit solutions in impulsive control. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1201-1218. doi: 10.3934/dcdss.2018068

[7]

Yu-Zhao Wang. $ \mathcal{W}$-Entropy formulae and differential Harnack estimates for porous medium equations on Riemannian manifolds. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2441-2454. doi: 10.3934/cpaa.2018116

[8]

Yu-Ming Chu, Saima Rashid, Fahd Jarad, Muhammad Aslam Noor, Humaira Kalsoom. More new results on integral inequalities for generalized $ \mathcal{K} $-fractional conformable Integral operators. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2119-2135. doi: 10.3934/dcdss.2021063

[9]

Xinliang An, Avy Soffer. Fermi's golden rule and $ H^1 $ scattering for nonlinear Klein-Gordon equations with metastable states. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 331-373. doi: 10.3934/dcds.2020013

[10]

Joackim Bernier. Bounds on the growth of high discrete Sobolev norms for the cubic discrete nonlinear Schrödinger equations on $ h\mathbb{Z} $. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3179-3195. doi: 10.3934/dcds.2019131

[11]

Ruonan Liu, Run Xu. Hermite-Hadamard type inequalities for harmonical $ (h1,h2)- $convex interval-valued functions. Mathematical Foundations of Computing, 2021, 4 (2) : 89-103. doi: 10.3934/mfc.2021005

[12]

Najeeb Abdulaleem. Optimality and duality for $ E $-differentiable multiobjective programming problems involving $ E $-type Ⅰ functions. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022004

[13]

Abdallah Benabdallah, Mohsen Dlala. Rapid exponential stabilization by boundary state feedback for a class of coupled nonlinear ODE and $ 1-d $ heat diffusion equation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1085-1102. doi: 10.3934/dcdss.2021092

[14]

Rakesh Nandi, Sujit Kumar Samanta, Chesoong Kim. Analysis of $ D $-$ BMAP/G/1 $ queueing system under $ N $-policy and its cost optimization. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3603-3631. doi: 10.3934/jimo.2020135

[15]

Salah Missaoui. Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system in $ \mathbb{R}^3 $ nonlinear KGS system. Communications on Pure and Applied Analysis, 2022, 21 (2) : 567-584. doi: 10.3934/cpaa.2021189

[16]

Dean Crnković, Nina Mostarac, Bernardo G. Rodrigues, Leo Storme. $ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $. Advances in Mathematics of Communications, 2021, 15 (3) : 423-440. doi: 10.3934/amc.2020075

[17]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[18]

Mohan Mallick, R. Shivaji, Byungjae Son, S. Sundar. Bifurcation and multiplicity results for a class of $n\times n$ $p$-Laplacian system. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1295-1304. doi: 10.3934/cpaa.2018062

[19]

Peter Benner, Ryan Lowe, Matthias Voigt. $\mathcal{L}_{∞}$-norm computation for large-scale descriptor systems using structured iterative eigensolvers. Numerical Algebra, Control and Optimization, 2018, 8 (1) : 119-133. doi: 10.3934/naco.2018007

[20]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, 2021, 29 (3) : 2445-2456. doi: 10.3934/era.2020123

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (189)
  • HTML views (584)
  • Cited by (0)

Other articles
by authors

[Back to Top]