\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimal control of switched systems with multiple time-delays and a cost on changing control

  • * Corresponding author: Chongyang Liu

    * Corresponding author: Chongyang Liu 
Abstract Full Text(HTML) Figure(2) / Table(1) Related Papers Cited by
  • In this paper, we consider a class of optimal switching control problems with multiple time-delays and a cost on changing control and subject to terminal state constraints. A computational method involving three stages is developed to solve this class of optimal control problems. First, by parameterizing the control function with piecewise-constant functions, the optimal switching control problem is approximated by a sequence of finite-dimensional optimization problems, where the original switching times, the control heights and the control switching times are decision variables. Second, by introducing new variables, the total variation of the control variables is transformed into an equivalently smooth function. Third, we convert the constrained optimization problem into one only with box constraints by an exact penalty function method. The gradients of the cost functional are then derived, which can be combined with any gradient-based optimization method to determine the optimal solution. Finally, a numerical example is given to illustrate the effectiveness of the proposed algorithm.

    Mathematics Subject Classification: Primary: 49J21, 49M37; Secondary: 34K34.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Optimal control.

    Figure 2.  Optimal state trajectories.

    Table 1.  Cost, terminal constraint and total variation for different weighting coefficients

    Weight
    $\gamma$
    Cost
    $x_1(1.5)-2$
    Terminal constraint
    $x_2(1.5)-1$
    Total variation
    $\bigvee\limits_0^{1.5}u$
    0 $4.3054\times10^{-5}$ $3.7923\times10^{-8}$ 185.4279
    0.01 0.0024 $4.9779\times10^{-8}$ 95.1071
    0.05 0.0173 $2.9718\times10^{-7}$ 53.5099
    0.1 0.0716 $1.3383\times10^{-7}$ 31.3635
    0.5 0.0234 $3.8322\times10^{-5}$ 5.4157
     | Show Table
    DownLoad: CSV
  • [1] N. U. Ahmed, Elements of Finite-Dimensional Systems and Control Theory, Longman Scientific and Technical, Essex, 1988.
    [2] S. C. Bengea and A. D. Raymond, Optimal control of switching systems, Automatica, 41 (2005), 11-27.  doi: 10.1016/j.automatica.2004.08.003.
    [3] J. M. Blatt, Optimal control with a cost of switching control, Journal of the Australian Mathematical Society-Series B, 19 (1976), 316-332.  doi: 10.1017/S0334270000001181.
    [4] F. DelmotteE. I. Verriest and M. Egerstedt, Optimal impulsive control of delay systems, ESAIM Control Optimisation and Calculus of Variations, 14 (2008), 767-779.  doi: 10.1051/cocv:2008009.
    [5] P. Howlett, Optimal strategies for the control of a train, Automatica, 32 (1996), 519-532.  doi: 10.1016/0005-1098(95)00184-0.
    [6] R. LiK. L. TeoK. H. Wong and G. R. Duan, Control parameterization enhancing transform for optimal control of switched systems, Mathematical and Computer Modelling, 43 (2006), 1393-1403.  doi: 10.1016/j.mcm.2005.08.012.
    [7] Q. LinR. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey, Journal of Industrial and Management Optimization, 10 (2014), 275-309.  doi: 10.3934/jimo.2014.10.275.
    [8] Q. LinR. LoxtonK. L. Teo and Y. H. Wu, A new computational method for optimizing nonlinear impulsive systems, Dynamics of Continuous, Discrete and Impulsive Systems-Series B, 18 (2011), 59-76. 
    [9] C. LiuZ. GongB. Shen and E. Feng, Modelling and optimal control for a fed-batch fermentation process, Applied Mathematical Modelling, 37 (2013), 695-706.  doi: 10.1016/j.apm.2012.02.044.
    [10] C. LiuZ. GongK. L. Teo and E. Feng, Multi-objective optimization of nonlinear switched time-delay systems in fed-batch process, Applied Mathematical Modelling, 40 (2016), 10533-10548.  doi: 10.1016/j.apm.2016.07.010.
    [11] C. LiuR. Loxton and K. L. Teo, Switching time and parameter optimization in nonlinear switched systems with multiple time-delays, Journal of Optimization Theory and Applications, 163 (2014), 957-988.  doi: 10.1007/s10957-014-0533-7.
    [12] R. LoxtonK. L. Teo and V. Rehbock, Computational method for a class of switched system optimal control problems, IEEE Transactions on Automatic Control, 54 (2009), 2455-2460.  doi: 10.1109/TAC.2009.2029310.
    [13] R. LoxtonK. L. TeoV. Rehbock and W. K. Ling, Optimal switching instants for a switched-capacitor DC/DC power converter, Automatica, 45 (2009), 973-980.  doi: 10.1016/j.automatica.2008.10.031.
    [14] R. LoxtonQ. Lin and K. L. Teo, Minimizing control variation in nonlinear optimal control, Automatica, 49 (2013), 2652-2664.  doi: 10.1016/j.automatica.2013.05.027.
    [15] J. Matula, On an extremum problem, Journal of the Australian Mathematical Society-Series B, 28 (1987), 376-392.  doi: 10.1017/S0334270000005464.
    [16] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, 1999. doi: 10.1007/b98874.
    [17] J. P. Richard, Time-delay systems: An overview of some recent advances and open problems, Automatica, 39 (2003), 1667-1694.  doi: 10.1016/S0005-1098(03)00167-5.
    [18] T. I. Seidman, Optimal control for switching systems, Proceedings of the 21st Annual Conference on Information Science and Systems, 1987.
    [19] K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, Longman Scientific and Technical, Essex, 1991.
    [20] K. L. Teo and L. S. Jennings, Optimal control with a cost on changing control, Journal of Optimization Theory and Applications, 68 (1991), 336-357.  doi: 10.1007/BF00941572.
    [21] E. I. Verriest, Optimal control for switched point delay systems with refractory period, The 16th IFAC World Congress, 38 (2005), 413-418.  doi: 10.3182/20050703-6-CZ-1902.00930.
    [22] E. I. Verriest, F. Delmotte and M. Egerstedt, Optimal impulsive control of point delay systems with refractory period, Proceedings of the 5th IFAC Workshop on Time Delay Systems, 2004.
    [23] L. WangQ. LinR. LoxtonK. L. Teo and G. Cheng, Optimal 1, 3-propanediol production: Exploring the trade-off between process yield and feeding rate variation, Journal of Process Control, 32 (2015), 1-9.  doi: 10.1016/j.jprocont.2015.04.011.
    [24] S. F. WoonV. Rehbock and R. Loxton, Towards global solutions of optimal discrete-valued control problems, Optimal Control Applications and Methods, 33 (2012), 576-594.  doi: 10.1002/oca.1015.
    [25] C. WuK. L. TeoR. Li and Y. Zhao, Optimal control of switched systems with time delay, Applied Mathematics Letters, 19 (2006), 1062-1067.  doi: 10.1016/j.aml.2005.11.018.
    [26] X. Xu and P. J. Antsaklis, Optimal control of switched systems based on parameterization of the switching instants, IEEE Transactions on Automatic Control, 49 (2004), 2-16.  doi: 10.1109/TAC.2003.821417.
    [27] C. YuB. LiR. Loxton and K. L. Teo, A new exact penalty function method for continuous inequality constrained optimization problems, Journal of Industrial and Management Optimization, 6 (2010), 895-910.  doi: 10.3934/jimo.2010.6.895.
  • 加载中

Figures(2)

Tables(1)

SHARE

Article Metrics

HTML views(1059) PDF downloads(440) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return