[1]
|
N. U. Ahmed, Elements of Finite-Dimensional Systems and Control Theory, Longman Scientific and Technical, Essex, 1988.
|
[2]
|
S. C. Bengea and A. D. Raymond, Optimal control of switching systems, Automatica, 41 (2005), 11-27.
doi: 10.1016/j.automatica.2004.08.003.
|
[3]
|
J. M. Blatt, Optimal control with a cost of switching control, Journal of the Australian Mathematical Society-Series B, 19 (1976), 316-332.
doi: 10.1017/S0334270000001181.
|
[4]
|
F. Delmotte, E. I. Verriest and M. Egerstedt, Optimal impulsive control of delay systems, ESAIM Control Optimisation and Calculus of Variations, 14 (2008), 767-779.
doi: 10.1051/cocv:2008009.
|
[5]
|
P. Howlett, Optimal strategies for the control of a train, Automatica, 32 (1996), 519-532.
doi: 10.1016/0005-1098(95)00184-0.
|
[6]
|
R. Li, K. L. Teo, K. H. Wong and G. R. Duan, Control parameterization enhancing transform for optimal control of switched systems, Mathematical and Computer Modelling, 43 (2006), 1393-1403.
doi: 10.1016/j.mcm.2005.08.012.
|
[7]
|
Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey, Journal of Industrial and Management Optimization, 10 (2014), 275-309.
doi: 10.3934/jimo.2014.10.275.
|
[8]
|
Q. Lin, R. Loxton, K. L. Teo and Y. H. Wu, A new computational method for optimizing nonlinear impulsive systems, Dynamics of Continuous, Discrete and Impulsive Systems-Series B, 18 (2011), 59-76.
|
[9]
|
C. Liu, Z. Gong, B. Shen and E. Feng, Modelling and optimal control for a fed-batch fermentation process, Applied Mathematical Modelling, 37 (2013), 695-706.
doi: 10.1016/j.apm.2012.02.044.
|
[10]
|
C. Liu, Z. Gong, K. L. Teo and E. Feng, Multi-objective optimization of nonlinear switched time-delay systems in fed-batch process, Applied Mathematical Modelling, 40 (2016), 10533-10548.
doi: 10.1016/j.apm.2016.07.010.
|
[11]
|
C. Liu, R. Loxton and K. L. Teo, Switching time and parameter optimization in nonlinear switched systems with multiple time-delays, Journal of Optimization Theory and Applications, 163 (2014), 957-988.
doi: 10.1007/s10957-014-0533-7.
|
[12]
|
R. Loxton, K. L. Teo and V. Rehbock, Computational method for a class of switched system optimal control problems, IEEE Transactions on Automatic Control, 54 (2009), 2455-2460.
doi: 10.1109/TAC.2009.2029310.
|
[13]
|
R. Loxton, K. L. Teo, V. Rehbock and W. K. Ling, Optimal switching instants for a switched-capacitor DC/DC power converter, Automatica, 45 (2009), 973-980.
doi: 10.1016/j.automatica.2008.10.031.
|
[14]
|
R. Loxton, Q. Lin and K. L. Teo, Minimizing control variation in nonlinear optimal control, Automatica, 49 (2013), 2652-2664.
doi: 10.1016/j.automatica.2013.05.027.
|
[15]
|
J. Matula, On an extremum problem, Journal of the Australian Mathematical Society-Series B, 28 (1987), 376-392.
doi: 10.1017/S0334270000005464.
|
[16]
|
J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, 1999.
doi: 10.1007/b98874.
|
[17]
|
J. P. Richard, Time-delay systems: An overview of some recent advances and open problems, Automatica, 39 (2003), 1667-1694.
doi: 10.1016/S0005-1098(03)00167-5.
|
[18]
|
T. I. Seidman, Optimal control for switching systems, Proceedings of the 21st Annual Conference on Information Science and Systems, 1987.
|
[19]
|
K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems, Longman Scientific and Technical, Essex, 1991.
|
[20]
|
K. L. Teo and L. S. Jennings, Optimal control with a cost on changing control, Journal of Optimization Theory and Applications, 68 (1991), 336-357.
doi: 10.1007/BF00941572.
|
[21]
|
E. I. Verriest, Optimal control for switched point delay systems with refractory period, The 16th IFAC World Congress, 38 (2005), 413-418.
doi: 10.3182/20050703-6-CZ-1902.00930.
|
[22]
|
E. I. Verriest, F. Delmotte and M. Egerstedt, Optimal impulsive control of point delay systems with refractory period, Proceedings of the 5th IFAC Workshop on Time Delay Systems, 2004.
|
[23]
|
L. Wang, Q. Lin, R. Loxton, K. L. Teo and G. Cheng, Optimal 1, 3-propanediol production: Exploring the trade-off between process yield and feeding rate variation, Journal of Process Control, 32 (2015), 1-9.
doi: 10.1016/j.jprocont.2015.04.011.
|
[24]
|
S. F. Woon, V. Rehbock and R. Loxton, Towards global solutions of optimal discrete-valued control problems, Optimal Control Applications and Methods, 33 (2012), 576-594.
doi: 10.1002/oca.1015.
|
[25]
|
C. Wu, K. L. Teo, R. Li and Y. Zhao, Optimal control of switched systems with time delay, Applied Mathematics Letters, 19 (2006), 1062-1067.
doi: 10.1016/j.aml.2005.11.018.
|
[26]
|
X. Xu and P. J. Antsaklis, Optimal control of switched systems based on parameterization of the switching instants, IEEE Transactions on Automatic Control, 49 (2004), 2-16.
doi: 10.1109/TAC.2003.821417.
|
[27]
|
C. Yu, B. Li, R. Loxton and K. L. Teo, A new exact penalty function method for continuous inequality constrained optimization problems, Journal of Industrial and Management Optimization, 6 (2010), 895-910.
doi: 10.3934/jimo.2010.6.895.
|