Consider a bivariate Lévy-driven risk model in which the loss process of an insurance company and the investment return process are two independent Lévy processes. Under the assumptions that the loss process has a Lévy measure of consistent variation and the return process fulfills a certain condition, we investigate the asymptotic behavior of the finite-time ruin probability. Further, we derive two asymptotic formulas for the finite-time and infinite-time ruin probabilities in a single Lévy-driven risk model, in which the loss process is still a Lévy process, whereas the investment return process reduces to a deterministic linear function. In such a special model, we relax the loss process with jumps whose common distribution is long tailed and of dominated variation.
Citation: |
[1] |
N. H. Bingham, C. M. Goldie and J. L. Teugels,
Regular Variation, Cambridge University Press, Cambridge, 1987.
doi: 10. 1017/CBO9780511721434.![]() ![]() |
[2] |
Y. Chen and K. W. Ng, The ruin probability of the renewal model with constant interest force and negatively dependent heavy-tailed claims, Insurance Math. Econom., 40 (2007), 415-423.
doi: 10.1016/j.insmatheco.2006.06.004.![]() ![]() |
[3] |
Y. Chen, K. W. Ng and Q. Tang, Weighted sums of subexponential random variables and their maxima, Adv. in Appl. Probab., 37 (2005), 510-522.
doi: 10.1017/S0001867800000288.![]() ![]() |
[4] |
Y. Chen and K. C. Yuen, Sums of pairwise quasi-asymptotically independent random variables with consistent variation, Stoch. Models, 25 (2009), 76-89.
doi: 10.1080/15326340802641006.![]() ![]() |
[5] |
D. B. H. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables, Stochastic Process. Appl., 49 (1994), 75-98.
doi: 10.1016/0304-4149(94)90113-9.![]() ![]() |
[6] |
P. Embrechts, C. Klüppelberg and T. Mikosch,
Modelling Extremal Events for Insurance and Finance, Springer-Verlag, Berlin, 1997.
doi: 10. 1007/978-3-642-33483-2.![]() ![]() |
[7] |
S. Foss, D. Korshunov and S. Zachary,
An Introduction to Heavy-tailed and Subexponential Distributions, Springer-Verlag, New York, 2011.
doi: 10. 1007/978-1-4419-9473-8.![]() ![]() ![]() |
[8] |
A. Frolova, Y. Kabanov and S. Pergamenshchikov, In the insurance business risky investments
are dangerous, Finance Stoch., 6 (2002), 227-235.
doi: 10.1007/s007800100057.![]() ![]() |
[9] |
Q. Gao and Y. Wang, Randomly weighted sums with dominated varying-tailed increments and application to risk theory, J. Korean Statist. Society, 39 (2010), 305-314.
doi: 10.1016/j.jkss.2010.02.004.![]() ![]() |
[10] |
H. K. Gjessing and J. Paulsen, Present value distributions with applications to ruin theory and stochastic equations, Stochastic Process. Appl., 71 (1997), 123-144.
doi: 10.1016/S0304-4149(97)00072-0.![]() ![]() |
[11] |
D. R. Grey, Regular variation in the tail behaviour of solutions of random difference equations, Ann. Appl. Probab., 4 (1994), 169-183.
doi: 10.1214/aoap/1177005205.![]() ![]() |
[12] |
F. Guo and D. Wang, Finite-and infinite-time ruin probabilities with general stochastic
investment return processes and bivariate upper tail independent and heavy-tailed claims, Adv. in Appl. Probab., 45 (2013), 241-273.
doi: 10.1017/S0001867800006261.![]() ![]() |
[13] |
X. Hao and Q. Tang, A uniform asymptotic estimate for discounted aggregate claims with
sunexponential tails, Insurance Math. Econom., 43 (2008), 116-120.
doi: 10.1016/j.insmatheco.2008.03.009.![]() ![]() |
[14] |
X. Hao and Q. Tang, Asymptotic ruin probabilities for a bivariate Lévy-driven risk model with heavy-tailed claims and risky investments, J. Appl. Probab., 4 (2012), 939-953.
![]() |
[15] |
C. C. Heyde and D. Wang, Finite-time ruin probability with an exponential L´evy process
investment return and heavy-tailed claims, Adv. in Appl. Probab., 41 (2009), 206-224.
doi: 10.1017/S0001867800003190.![]() ![]() |
[16] |
V. Kalashnikov and D. Konstantinides, Ruin under interest force and subexponential claims:
A simple treatment, Insurance Math. Econom., 27 (2000), 145-149.
doi: 10.1016/S0167-6687(00)00045-7.![]() ![]() |
[17] |
V. Kalashnikov and R. Norberg, Power tailed ruin probabilities in the presence of risky
investments, Stochastic Process. Appl., 98 (2002), 211-228.
doi: 10.1016/S0304-4149(01)00148-X.![]() ![]() |
[18] |
C. Klüppelberg and R. Kostadinova, Integrated insurance risk models with exponential L´evy
investment, Insurance Math. Econom., 42 (2008), 560-577.
doi: 10.1016/j.insmatheco.2007.06.002.![]() ![]() |
[19] |
C. Klüppelberg and U. Stadtmüller, Ruin probabilities in the presence of heavy-tails and
interest rates, Scand. Actuar. J., 1 (1998), 49-58.
doi: 10.1080/03461238.1998.10413991.![]() ![]() |
[20] |
D. Konstantinides, Q. Tang and G. Tsitsiashvili, Estimates for the ruin probability in the
classical risk model with constant interest force in the presence of heavy tails, Insurance Math. Econom., 31 (2002), 447-460.
doi: 10.1016/S0167-6687(02)00189-0.![]() ![]() |
[21] |
J. Li, Asymptotics in a time-dependent renewal risk model with stochastic return, J. Math. Anal. Appl., 387 (2012), 1009-1023.
doi: 10.1016/j.jmaa.2011.10.012.![]() ![]() |
[22] |
J. Paulsen, On Cramér-like asymptotics for risk processes with stochastic return on investments, Ann. Appl. Probab., 12 (2002), 1247-1260.
doi: 10.1214/aoap/1037125862.![]() ![]() |
[23] |
J. Paulsen and H. K. Gjessing, Ruin theory with stochastic return on investments, Adv. in Appl. Probab., 29 (1997), 965-985.
doi: 10.1017/S0001867800047972.![]() ![]() |
[24] |
P. E. Protter,
Stochastic Integration and Differential Equations, 2nd edition, Springer-Verlag, Berlin, 2003.
doi: 10. 1007/978-3-662-10061-5.![]() ![]() |
[25] |
G. Samorodnitsky and M. S. Taqqu,
Stable Non-Gaussian Random Processes. Stochastic Models with Infinite Variance. Chapman & Hall, New York, 1994.
![]() |
[26] |
Q. Tang, The finite-time ruin probability of the compound Poisson model with constant
interest force, J. Appl. Probab., 42 (2005), 608-619.
doi: 10.1017/S0021900200000656.![]() ![]() |
[27] |
Q. Tang, Heavy tails of discounted aggregate claims in the continuous-time renewal model, J. Appl. Probab., 44 (2007), 285-294.
doi: 10.1017/S0021900200117826.![]() ![]() |
[28] |
Q. Tang and G. Tsitsiashvili, Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks, Stochastic Process. Appl., 108 (2003), 299-325.
doi: 10.1016/j.spa.2003.07.001.![]() ![]() |
[29] |
Q. Tang, G. Wang and K. C. Yuen, Uniform tail asymptotics for the stochastic present value
of aggregate claims in the renewal risk model, Insurance Math. Econom., 46 (2010), 362-370.
doi: 10.1016/j.insmatheco.2009.12.002.![]() ![]() |
[30] |
Q. Tang and Z. Yuan, Randomly weighted sums of subexponential random variables with
application to capital allocation, Extremes, 17 (2014), 467-493.
doi: 10.1007/s10687-014-0191-z.![]() ![]() |
[31] |
W. Vervaat, On a stochastic difference equation and a representation of nonnegative infinitely
divisible random variables, Adv. in Appl. Probab., 11 (1979), 750-783.
doi: 10.2307/1426858.![]() ![]() |
[32] |
D. Wang, Finite-time ruin probability with heavy-tailed claims and constant interest rate, Stoch. Models, 24 (2008), 41-57.
doi: 10.1080/15326340701826898.![]() ![]() |
[33] |
K. Wang, Y. Wang and Q. Gao, Uniform asymptotics for the finite-time ruin probability of
a dependent risk model with a constant interest rate, Methodol. Comput. Appl. Probab., 15 (2013), 109-124.
doi: 10.1007/s11009-011-9226-y.![]() ![]() |
[34] |
Y. Yang, R. Leipus and J. Šiaulys, On the ruin probability in a dependent discrete time risk
model with insurance and financial risks, J. Comput. Appl. Math., 236 (2012), 3286-3295.
doi: 10.1016/j.cam.2012.02.030.![]() ![]() |
[35] |
Y. Yang, J. Lin and Z. Tan, The finite-time ruin probability in the presence of Sarmanov dependent financial and insurance risks, Appl. Math. J. Chinese Univ., 29 (2014), 194-204.
doi: 10.1007/s11766-014-3209-z.![]() ![]() |
[36] |
Y. Yang, K. Wang and D. Konstantinides, Uniform asymptotics for discounted aggregate
claims in dependent risk models, J. Appl. Probab., 51 (2014), 669-684.
doi: 10.1017/S0021900200011591.![]() ![]() |
[37] |
Y. Yang and Y. Wang, Asymptotics for ruin probability of some negatively dependent risk models with a constant interest rate and dominatedly-varying-tailed claims, Statist. Probab. Letters, 80 (2010), 143-154.
doi: 10.1016/j.spl.2009.09.023.![]() ![]() |