[1]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3 (2010), 1-122.
|
[2]
|
X. J. Cai, D. R. Han and X. M. Yuan, On the convergence of the direct extension of ADMM for three-block separable convex minimization models with one strongly convex function, Computational Optimization and Applications, 66 (2017), 39-73.
doi: 10.1007/s10589-016-9860-y.
|
[3]
|
C. H. Chen, B. S. He, Y. Y. Ye and X. M. Yuan, The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, Mathematical Programming Ser. A, 155 (2016), 57-79.
doi: 10.1007/s10107-014-0826-5.
|
[4]
|
C. H. Chen, Y. Shen and Y. F. You, On the convergence analysis of the alternating direction method of multipliers with three blocks. Abstract and Applied Analysis, (2013), Article ID 183961, 7 pages.
|
[5]
|
E. Corman and X. M. Yuan, A generalized proximal point algorithm and its convergence rate, SIAM Journal on Optimization, 24 (2014), 1614-1638.
doi: 10.1137/130940402.
|
[6]
|
Y. H. Dai, D. R. Han, X. M. Yuan and W. X. Zhang, A sequential updating scheme of the Lagrange multiplier for separable convex programming, Mathematics of Computation, 86 (2017), 315-343.
doi: 10.1090/mcom/3104.
|
[7]
|
W. Deng, M.-J. Lai, Z. M. Peng and W. T. Yin, Parallel multi-block ADMM with o(1/k) convergence, Journal of Scientific Computing, 71 (2017), 712-736.
doi: 10.1007/s10915-016-0318-2.
|
[8]
|
J. Douglas and H. H. Rachford, On the numerical solution of the heat conduction problem in $2$ and $3$ space variables, Transactions of the American Mathematical Society, 82 (1956), 421-439.
doi: 10.1090/S0002-9947-1956-0084194-4.
|
[9]
|
D. Gabay, Applications of the method of multipliers to variational inequalities, in Augmented Lagrange Methods: Applications to the Solution of Boundary-valued Problems (eds. M. Fortin and R. Glowinski), North Holland, Amsterdam, The Netherlands, (1983), 299-331.
|
[10]
|
R. Glowinski, T. Kärkkäinen and K. Majava, On the convergence of operator-splitting methods, in Numerical Methods for Scientific Computing, Variational Problems and Applications (eds. Y. Kuznetsov, P. Neittanmaki and O. Pironneau), Barcelona, (2003).
|
[11]
|
R. Glowinski and A. Marrocco, Approximation par $\acute{e}$l$\acute{e}$ments finis d'ordre un et r$\acute{e}$solution par p$\acute{e}$nalisation-dualit$\acute{e}$ d'une classe de probl$\grave{e}$mes non lin$\acute{e}$aires, R.A.I.R.O., 9 (1975), 41-76.
|
[12]
|
D. R. Han, X. M Yuan, W. X. Zhang and X. J. Cai, An ADM-based splitting method for separable convex programming, Computational Optimization and Applications, 54 (2013), 343-369.
doi: 10.1007/s10589-012-9510-y.
|
[13]
|
B. S. He, H. Liu, J. W. Lu and X. M. Yuan, Application of the strictly contractive PeacemanRachford splitting method to multi-block seperable convex programming, manuscript, in Splitting Methods in Communication and Imaging, Science, and Engineering (eds. R. Glowinski, S. Osher and W. Yin), Springer, Switzerland, (2016), 195-235.
|
[14]
|
B. S. He, H. Liu, Z. R. Wang and X. M. Yuan, A strictly contractive Peaceman-Rachford splitting method for convex programming, SIAM Journal on Optimization, 24 (2014), 1101-1140.
doi: 10.1137/13090849X.
|
[15]
|
B. S. He, M. Tao and X. M. Yuan, A splitting method for separable convex programming, IMA Journal of Numerical Analysis, 35 (2015), 394-426.
doi: 10.1093/imanum/drt060.
|
[16]
|
B. S. He, M. Tao and X. M. Yuan, Alternating direction method with Gaussian back substitution for separable convex programming, SIAM Journal on Optimization, 22 (2012), 313-340.
doi: 10.1137/110822347.
|
[17]
|
B. S. He and X. M. Yuan, On the O(1/n) convergence rate of Douglas-Rachford alternating direction method, SIAM Journal on Numerical Analysis, 50 (2012), 700-709.
doi: 10.1137/110836936.
|
[18]
|
B. S. He and X. M. Yuan, On nonergodic convergence rate of Douglas-Rachford alternating direction method of multipliers, Numerische Mathematik, 30 (2015), 567-577.
doi: 10.1007/s00211-014-0673-6.
|
[19]
|
M. Li, D. F. Sun and K. -C. Toh, A convergent 3-block semi-proximal ADMM for convex minimization problems with one strongly convex block, Asia Pacific Journal of Operational Research, 32 (2015), 1550024, 19 pp.
doi: 10.1142/S0217595915500244.
|
[20]
|
X. D. Li, D. F. Sun and K.-C. Toh, A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions, Mathematical Programming Ser. A, 155 (2016), 333-373.
doi: 10.1007/s10107-014-0850-5.
|
[21]
|
T. Y. Lin, S. Q. Ma and S. Z. Zhang, On the global linear convergence of the ADMM with multi-block variables, SIAM Journal on Optimization, 25 (2015), 1478-1497.
doi: 10.1137/140971178.
|
[22]
|
T. Y. Lin, S. Q. Ma and S. Z. Zhang, On the sublinear convergence rate of multi-block {ADMM}, Journal of the Operations Research Society of China, 3 (2015), 251-274.
doi: 10.1007/s40305-015-0092-0.
|
[23]
|
P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM Journal on Numerical Analysis, 16 (1979), 964-979.
doi: 10.1137/0716071.
|
[24]
|
S. Q. Ma, Alternating proximal gradient method for convex minimization, Journal of Scientific Computing, 68 (2016), 546-572.
doi: 10.1007/s10915-015-0150-0.
|
[25]
|
Y. E. Nesterov, Gradient methods for minimizing composite objective function, Mathematical Programming Ser. B, 140 (2013), 125-161.
doi: 10.1007/s10107-012-0629-5.
|
[26]
|
M. Patriksson, A survey on the continuous nonlinear resource allocation Problem, European Journal of Operations Research, 185 (2008), 1-46.
doi: 10.1016/j.ejor.2006.12.006.
|
[27]
|
D. H. Peaceman and H. H. Rachford, The numerical solution of parabolic elliptic differential equations, SIAM Journal on Applied Mathematics, 3 (1955), 28-41.
doi: 10.1137/0103003.
|
[28]
|
Y. G. Peng, A. Ganesh, J. Wright, W. L. Xu and Y. Ma, Robust alignment by sparse and low-rank decomposition for linearly correlated images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34 (2012), 2233-2246.
doi: 10.1109/CVPR.2010.5540138.
|
[29]
|
M. Tao and X. M. Yuan, Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM Journal on Optimization, 21 (2011), 57-81.
doi: 10.1137/100781894.
|
[30]
|
H. Uzawa, Market mechanisms and mathematical programming, Econometrica, 28 (1960), 872-881.
doi: 10.2307/1907569.
|