
英文注解
School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China |
In this study, the stability problem of descriptor second-order systems is considered. Lyapunov equations for stability of second-order systemsare established by using Lyapunov method. The existence of solutions for Lyapunov equations are discussed and linear matrixinequality condition for stability of second-order systems aregiven. Then, based on the feasible solutions of the linear matrixinequality, all parametric solutions of Lyapunov equations are derived.Furthermore, the results of Lyapunov equations and linear matrixinequality condition for stability of second-ordersystems are extended to high-order systems. Finally, illustratingexamples are provided to show the effectiveness of the proposed method.
[1] |
B. D. O. Anderson and R. E. Bitmead,
Stability of matrix polynomials, International Journal of Control, 26 (1977), 235-247.
doi: 10.1080/00207177708922306. |
[2] |
D. S. Bernstein and S. P. Bhat,
Lyapunov stability, semistability, and asymptotic stability of matrix second-order systems, Journal of Vibration and Acoustics, 117 (1994), 145-153.
doi: 10.1109/ACC.1994.752501. |
[3] |
D. Y. Chen, R. F. Zhang and X. Z. Liu,
Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 4105-4121.
doi: 10.1016/j.cnsns.2014.05.005. |
[4] |
L. Colombo, F. Jiménez and D. Martín de Diego,
Variational integrators for mechanical control systems with symmetries, Journal of Industrial and Management Optimization, 2 (2015), 193-225.
doi: 10.3934/jcd.2015003. |
[5] |
A. M. Diwekar and R. K. Yedavalli,
Stability of matrix second-order systems: New conditions and perspectives, IEEE Transaction on Automatic Control, 44 (1999), 1773-1777.
doi: 10.1109/9.788551. |
[6] |
G. R. Duan,
Analysis and Design of Descriptor Linear Systems,
Springer, 2010.
doi: 10.1007/978-1-4419-6397-0. |
[7] |
Y. Feng, M. Yagoubi and P. Chevrel,
Parametrization of extended stabilizing controllers for continuous-time descriptor systems, Journal of The Franklin Institute, 348 (2011), 2633-2646.
doi: 10.1016/j.jfranklin.2011.08.006. |
[8] |
L. X. Gao, W. H. Chen and Y. X. Sun, On robust admissibility condition for descriptor systems with convex polytopic uncertainty, Proceeding of the American Control Conference, 6 (2003), 5083-5088. Google Scholar |
[9] |
S. H. Huang, R. F. Zhang and D. Y. Chen,
Stability of nonlinear fractional-order time varying systems
Journal of Computational and Nonlinear Dynamics, w (2016), 031007.
doi: 10.1115/1.4031587. |
[10] |
S. Johansson, B. Kågström and P. V. Dooren,
Stratification of full rank polynomial matrices, Linear Algebra and its Applications, 439 (2013), 1062-1090.
doi: 10.1016/j.laa.2012.12.013. |
[11] |
D. T. Kawano, M. Morzfeld and F. Ma,
The decoupling of second-order linear systems with a singular mass matrix, Journal of Sound and Vibration, 332 (2013), 6829-6846.
doi: 10.1016/j.jsv.2013.08.005. |
[12] |
H. K. Khalil, Nonlinear Systems, 3$^{rd}$ edition, Publishing House of Electronics Industry, Beijing, 2011. Google Scholar |
[13] |
P. Lancaster and P. Zizler,
On the stability of gyroscopic systems, Journal of Applied Mechanics, 65 (1998), 519-522.
doi: 10.1115/1.2789085. |
[14] |
P. Lancaster,
Stability of linear gyroscopic systems: A review, Linear Algebra and its Applications, 439 (2013), 686-706.
doi: 10.1016/j.laa.2012.12.026. |
[15] |
P. Losse and V. Mehrmann,
Controllability and observability of second order descriptor systems, SIAM Journal on Control and Optimization, 47 (2008), 1351-1379.
doi: 10.1137/060673977. |
[16] |
M. Morzfeld and F. Ma,
The decoupling of damped linear systems in configuration and state spaces, Journal of Sound and Vibration, 330 (2011), 155-161.
doi: 10.1016/j.jsv.2010.09.005. |
[17] |
N. K. Nichols and J. Kautsky,
Robust eigenstructure assignment in quadratic matrix polynomials: Nonsingular case, SIAM Journal on Matrix Analysis and Applications, 23 (2001), 77-102.
doi: 10.1137/S0895479899362867. |
[18] |
P. Resende and E. Kaszkurewicz,
A sufficient condition for the stability of matrix, IEEE Transaction on Automatic Control, 34 (1989), 539-541.
doi: 10.1109/9.24207. |
[19] |
L. S. Shieh, M. M. Mehio and H. M. Dib,
Stability of the second-order matrix polynomial, IEEE Transaction on Automatic Control, 32 (1987), 231-233.
doi: 10.1109/TAC.1987.1104572. |
[20] |
F. Yu and Y. Mohamed,
Comprehensive admissibility for descriptor systems, Automatica, 66 (2016), 271-275.
doi: 10.1016/j.automatica.2016.01.028. |
[21] |
J. Zhang, H. Ouyang and J. Yang,
Partial eigenstructure assignment for undamped vibration systems using acceleration and displacement feedback, Journal of Sound and Vibration, 333 (2014), 1-12.
doi: 10.1016/j.jsv.2013.08.040. |
[22] |
D. Z. Zheng, Linear System Theory, 2$^{nd}$ edition, Tsinghua University Press, Beijing, 2002. Google Scholar |
show all references
[1] |
B. D. O. Anderson and R. E. Bitmead,
Stability of matrix polynomials, International Journal of Control, 26 (1977), 235-247.
doi: 10.1080/00207177708922306. |
[2] |
D. S. Bernstein and S. P. Bhat,
Lyapunov stability, semistability, and asymptotic stability of matrix second-order systems, Journal of Vibration and Acoustics, 117 (1994), 145-153.
doi: 10.1109/ACC.1994.752501. |
[3] |
D. Y. Chen, R. F. Zhang and X. Z. Liu,
Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 4105-4121.
doi: 10.1016/j.cnsns.2014.05.005. |
[4] |
L. Colombo, F. Jiménez and D. Martín de Diego,
Variational integrators for mechanical control systems with symmetries, Journal of Industrial and Management Optimization, 2 (2015), 193-225.
doi: 10.3934/jcd.2015003. |
[5] |
A. M. Diwekar and R. K. Yedavalli,
Stability of matrix second-order systems: New conditions and perspectives, IEEE Transaction on Automatic Control, 44 (1999), 1773-1777.
doi: 10.1109/9.788551. |
[6] |
G. R. Duan,
Analysis and Design of Descriptor Linear Systems,
Springer, 2010.
doi: 10.1007/978-1-4419-6397-0. |
[7] |
Y. Feng, M. Yagoubi and P. Chevrel,
Parametrization of extended stabilizing controllers for continuous-time descriptor systems, Journal of The Franklin Institute, 348 (2011), 2633-2646.
doi: 10.1016/j.jfranklin.2011.08.006. |
[8] |
L. X. Gao, W. H. Chen and Y. X. Sun, On robust admissibility condition for descriptor systems with convex polytopic uncertainty, Proceeding of the American Control Conference, 6 (2003), 5083-5088. Google Scholar |
[9] |
S. H. Huang, R. F. Zhang and D. Y. Chen,
Stability of nonlinear fractional-order time varying systems
Journal of Computational and Nonlinear Dynamics, w (2016), 031007.
doi: 10.1115/1.4031587. |
[10] |
S. Johansson, B. Kågström and P. V. Dooren,
Stratification of full rank polynomial matrices, Linear Algebra and its Applications, 439 (2013), 1062-1090.
doi: 10.1016/j.laa.2012.12.013. |
[11] |
D. T. Kawano, M. Morzfeld and F. Ma,
The decoupling of second-order linear systems with a singular mass matrix, Journal of Sound and Vibration, 332 (2013), 6829-6846.
doi: 10.1016/j.jsv.2013.08.005. |
[12] |
H. K. Khalil, Nonlinear Systems, 3$^{rd}$ edition, Publishing House of Electronics Industry, Beijing, 2011. Google Scholar |
[13] |
P. Lancaster and P. Zizler,
On the stability of gyroscopic systems, Journal of Applied Mechanics, 65 (1998), 519-522.
doi: 10.1115/1.2789085. |
[14] |
P. Lancaster,
Stability of linear gyroscopic systems: A review, Linear Algebra and its Applications, 439 (2013), 686-706.
doi: 10.1016/j.laa.2012.12.026. |
[15] |
P. Losse and V. Mehrmann,
Controllability and observability of second order descriptor systems, SIAM Journal on Control and Optimization, 47 (2008), 1351-1379.
doi: 10.1137/060673977. |
[16] |
M. Morzfeld and F. Ma,
The decoupling of damped linear systems in configuration and state spaces, Journal of Sound and Vibration, 330 (2011), 155-161.
doi: 10.1016/j.jsv.2010.09.005. |
[17] |
N. K. Nichols and J. Kautsky,
Robust eigenstructure assignment in quadratic matrix polynomials: Nonsingular case, SIAM Journal on Matrix Analysis and Applications, 23 (2001), 77-102.
doi: 10.1137/S0895479899362867. |
[18] |
P. Resende and E. Kaszkurewicz,
A sufficient condition for the stability of matrix, IEEE Transaction on Automatic Control, 34 (1989), 539-541.
doi: 10.1109/9.24207. |
[19] |
L. S. Shieh, M. M. Mehio and H. M. Dib,
Stability of the second-order matrix polynomial, IEEE Transaction on Automatic Control, 32 (1987), 231-233.
doi: 10.1109/TAC.1987.1104572. |
[20] |
F. Yu and Y. Mohamed,
Comprehensive admissibility for descriptor systems, Automatica, 66 (2016), 271-275.
doi: 10.1016/j.automatica.2016.01.028. |
[21] |
J. Zhang, H. Ouyang and J. Yang,
Partial eigenstructure assignment for undamped vibration systems using acceleration and displacement feedback, Journal of Sound and Vibration, 333 (2014), 1-12.
doi: 10.1016/j.jsv.2013.08.040. |
[22] |
D. Z. Zheng, Linear System Theory, 2$^{nd}$ edition, Tsinghua University Press, Beijing, 2002. Google Scholar |
[1] |
Gábor Kiss, Bernd Krauskopf. Stability implications of delay distribution for first-order and second-order systems. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 327-345. doi: 10.3934/dcdsb.2010.13.327 |
[2] |
José F. Cariñena, Javier de Lucas Araujo. Superposition rules and second-order Riccati equations. Journal of Geometric Mechanics, 2011, 3 (1) : 1-22. doi: 10.3934/jgm.2011.3.1 |
[3] |
Yi Zhang, Yong Jiang, Liwei Zhang, Jiangzhong Zhang. A perturbation approach for an inverse linear second-order cone programming. Journal of Industrial & Management Optimization, 2013, 9 (1) : 171-189. doi: 10.3934/jimo.2013.9.171 |
[4] |
He Zhang, Xue Yang, Yong Li. Lyapunov-type inequalities and solvability of second-order ODEs across multi-resonance. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1133-1148. doi: 10.3934/dcdss.2017061 |
[5] |
W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209 |
[6] |
José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213 |
[7] |
Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609 |
[8] |
Jaume Llibre, Amar Makhlouf. Periodic solutions of some classes of continuous second-order differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 477-482. doi: 10.3934/dcdsb.2017022 |
[9] |
M. Euler, N. Euler, M. C. Nucci. On nonlocal symmetries generated by recursion operators: Second-order evolution equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4239-4247. doi: 10.3934/dcds.2017181 |
[10] |
Osama Moaaz, Omar Bazighifan. Oscillation criteria for second-order quasi-linear neutral functional differential equation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2465-2473. doi: 10.3934/dcdss.2020136 |
[11] |
Qingsong Duan, Mengwei Xu, Liwei Zhang, Sainan Zhang. Hadamard directional differentiability of the optimal value of a linear second-order conic programming problem. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020108 |
[12] |
Qi Hong, Jialing Wang, Yuezheng Gong. Second-order linear structure-preserving modified finite volume schemes for the regularized long wave equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6445-6464. doi: 10.3934/dcdsb.2019146 |
[13] |
Hongwei Lou. Second-order necessary/sufficient conditions for optimal control problems in the absence of linear structure. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1445-1464. doi: 10.3934/dcdsb.2010.14.1445 |
[14] |
Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929 |
[15] |
Maurizio Grasselli, Morgan Pierre. Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2393-2416. doi: 10.3934/cpaa.2012.11.2393 |
[16] |
Dong-Lun Wu, Chun-Lei Tang, Xing-Ping Wu. Existence and nonuniqueness of homoclinic solutions for second-order Hamiltonian systems with mixed nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (1) : 57-72. doi: 10.3934/cpaa.2016.15.57 |
[17] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[18] |
Kyeong-Hun Kim, Kijung Lee. A weighted $L_p$-theory for second-order parabolic and elliptic partial differential systems on a half space. Communications on Pure & Applied Analysis, 2016, 15 (3) : 761-794. doi: 10.3934/cpaa.2016.15.761 |
[19] |
Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020040 |
[20] |
Eugenii Shustin, Emilia Fridman, Leonid Fridman. Oscillations in a second-order discontinuous system with delay. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 339-358. doi: 10.3934/dcds.2003.9.339 |
2019 Impact Factor: 1.366
[Back to Top]