April  2018, 14(2): 687-705. doi: 10.3934/jimo.2017069

A loss-averse two-product ordering model with information updating in two-echelon inventory system

1. 

School of Business, Central South University, Changsha 410083, China

2. 

School of Architecture Engineering, Jiangxi Modern Polytechnic College, Nanchang 330095, China

* Corresponding author: shenzhen@csu.edu.cn

The reviewing process was handled by Changjun Yu.

Received  December 2015 Revised  December 2016 Published  June 2017

Fund Project: The Paper is supported by NNSF grants (No. 71221061, 71210003, 71431006, 71471178, 71171201, 71671189) and NCET grant( No. NCET-11-0524).

This paper integrates the prospect theory with two-product ordering problem and adopts Bayesian forecasting model under Brownian motion to propose a loss-averse two-product ordering model with demand information updating in a two-echelon inventory system. We also derive all psychological perceived revenue functions for sixteen supply-demand cases as well as the expected value functions and prospect value function for the loss-averse retailer. To solve this model, a Monte Carlo algorithm is presented to estimate the high dimensional integrals with curved polyhedral integral region of unknown volume. Numerical results show that the optimal order quantities of both high-risk product and low-risk product vary across different psychological reference points, which are also affected by information updating, and the loss-averse retailer benefits considerably from information updating. All results suggest that our model provides a better description of the retailer$'$s actual ordering behavior than existing models.

Citation: Yanju Zhou, Zhen Shen, Renren Ying, Xuanhua Xu. A loss-averse two-product ordering model with information updating in two-echelon inventory system. Journal of Industrial & Management Optimization, 2018, 14 (2) : 687-705. doi: 10.3934/jimo.2017069
References:
[1]

L. Abdel-MalekR. Montanari and L. C. Morales, Exact, approximate, and generic iterative models for the multi-product newsboy problem with budget constraint, International Journal of Production Economics, 2 (2004), 189-198.   Google Scholar

[2]

V. Agrawal and S. Seshadri, Impact of uncertainty and risk aversion on price and order quantity in the newsvendor problem, Manufacturing & Service Operations Management, 4 (2000), 410-423.   Google Scholar

[3]

S. Choi and A. Ruszczyński, A multi-product risk-averse newsvendor with exponential utility function, European Journal of Operational Research, 214 (2011), 78-84.   Google Scholar

[4]

A. DvoretzkyJ. Kiefer and J. Wolfowitz, The inventory problem: Ⅱ. Case of unknown distributions of demand, Econometrica: Journal of the Econometric Society, 20 (1952), 450-466.   Google Scholar

[5]

L. EeckhoudtC. Gollier and H. Schlesinger, The risk-averse (and prudent) newsboy, Management Science, 5 (1995), 786-794.   Google Scholar

[6]

G. Hadley and T. M. Whitin, Analysis of Inventory Systems, Prentice Hall, Upper Saddle River, 1994. Google Scholar

[7]

M. Joseph and K. Panos, On the complementary value of accurate demand information and production and supplier flexibility, Manufacturing & Service Operations Management, 2 (2002), 99-113.   Google Scholar

[8]

D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 2 (1979), 263-292.   Google Scholar

[9]

M. Khouja, The single-period (newsvendor) problem: Literature review and suggestions for future research, Omega, 5 (1999), 537-553.   Google Scholar

[10]

A. H. L. Lau and H. S. Lau, Decision models for single-period products with two ordering opportunities, International Journal of Production Economics, 5 (1998), 57-70.   Google Scholar

[11]

W. LiuS. Song and C. Wu, Impact of loss aversion on the newsvendor game with product substitution, International Journal of Production Economics, 141 (2013), 352-359.   Google Scholar

[12]

X. Long and J. Nasiry, Prospect theory explains newsvendor behavior: The role of reference points, Management Science, 61 (2014), 3009-3012.   Google Scholar

[13]

L. MaY. ZhaoW. XueT. Cheng and H. Yan, Loss-averse newsvendor model with two ordering opportunities and market information updating, International Journal of Production Economics, 140 (2012), 912-921.   Google Scholar

[14]

G. C. Mahata, A single period inventory model for incorporating two-ordering opportunities under imprecise demand information, International Journal of Industrial Engineering Computations, 2 (2011), 385-394.   Google Scholar

[15]

J. Miltenburg and C. Pong, Order quantities for style goods with two order opportunities and Bayesian updating of demand: Part 2-capacity constraints, International Journal of Production Research, 8 (2007), 1707-1723.   Google Scholar

[16]

J. V. Neuman and O. Morgenstern, Theory of Games and Economic Behavior, 2$^{nd}$ edition, Princeton university press, Princeton, 1994. Google Scholar

[17]

N. C. Petruzzi and M. Dada, Pricing and the newsvendor problem: A review with extensions, Operations Research, 2 (1999), 183-194.   Google Scholar

[18]

R. Pindyck, Irreversible investment, capacity choice, and the value of the firm, American Economic Review, 5 (1988), 969-985.   Google Scholar

[19]

Y. QinR. WangA. J. VakhariaY. Chen and M. M. H. Seref, The newsvendor problem: Review and directions for future research, European Journal of Operational Research, 213 (2011), 361-374.   Google Scholar

[20]

M. E. Schweitzer and G. P. Cachon, Decision bias in the newsvendor problem with a known demand distribution: experimental evidence, Management Science, 3 (2000), 404-420.   Google Scholar

[21]

G. H. Tannous, Capital budgeting for volume flexibility equipment, Decision Sciences, 2 (1996), 157-184.   Google Scholar

[22]

R. H. ThalerA. TverskyD. Kahneman and A Schwartz, The effect of myopia and loss aversion on risk taking: An experimental test, The Quarterly Journal of Economics, 112 (1997), 647-661.   Google Scholar

[23]

C. X. Wang and S. Webster, The loss-averse newsvendor problem, Omega, 37 (2009), 93-105.   Google Scholar

[24]

C. X. Wang, The loss-averse newsvendor game, International Journal of Production Economics, 124 (2010), 448-452.   Google Scholar

[25]

Q. ZhangD. ZhangY. Tsao and J. Luo, Optimal ordering policy in a two-stage supply chain with advance payment for stable supply capacity, International Journal of Production Economics, 177 (2016), 34-43.   Google Scholar

[26]

Y. ZhouX. ChenX. Xu and C. Yu, A multi-product newsvendor problem with budget and loss constraints, International Journal of Information Technology & Decision Making, 5 (2005), 1093-1110.   Google Scholar

[27]

Y. ZhouW. Qiu and Z. Wang, Product-portfolio Ordering Analysis with Update Information in the Two-echelon: Risk Decision-making Model, Systems Engineering-Theory & Practice, 28 (2008), 9-16.   Google Scholar

[28]

Y. ZhouR. YingX. Chen and Z. Wang, Two-product newsboy problem based on prospect theory, Journal of Management Sciences in China, 11 (2013), 17-29.   Google Scholar

show all references

References:
[1]

L. Abdel-MalekR. Montanari and L. C. Morales, Exact, approximate, and generic iterative models for the multi-product newsboy problem with budget constraint, International Journal of Production Economics, 2 (2004), 189-198.   Google Scholar

[2]

V. Agrawal and S. Seshadri, Impact of uncertainty and risk aversion on price and order quantity in the newsvendor problem, Manufacturing & Service Operations Management, 4 (2000), 410-423.   Google Scholar

[3]

S. Choi and A. Ruszczyński, A multi-product risk-averse newsvendor with exponential utility function, European Journal of Operational Research, 214 (2011), 78-84.   Google Scholar

[4]

A. DvoretzkyJ. Kiefer and J. Wolfowitz, The inventory problem: Ⅱ. Case of unknown distributions of demand, Econometrica: Journal of the Econometric Society, 20 (1952), 450-466.   Google Scholar

[5]

L. EeckhoudtC. Gollier and H. Schlesinger, The risk-averse (and prudent) newsboy, Management Science, 5 (1995), 786-794.   Google Scholar

[6]

G. Hadley and T. M. Whitin, Analysis of Inventory Systems, Prentice Hall, Upper Saddle River, 1994. Google Scholar

[7]

M. Joseph and K. Panos, On the complementary value of accurate demand information and production and supplier flexibility, Manufacturing & Service Operations Management, 2 (2002), 99-113.   Google Scholar

[8]

D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 2 (1979), 263-292.   Google Scholar

[9]

M. Khouja, The single-period (newsvendor) problem: Literature review and suggestions for future research, Omega, 5 (1999), 537-553.   Google Scholar

[10]

A. H. L. Lau and H. S. Lau, Decision models for single-period products with two ordering opportunities, International Journal of Production Economics, 5 (1998), 57-70.   Google Scholar

[11]

W. LiuS. Song and C. Wu, Impact of loss aversion on the newsvendor game with product substitution, International Journal of Production Economics, 141 (2013), 352-359.   Google Scholar

[12]

X. Long and J. Nasiry, Prospect theory explains newsvendor behavior: The role of reference points, Management Science, 61 (2014), 3009-3012.   Google Scholar

[13]

L. MaY. ZhaoW. XueT. Cheng and H. Yan, Loss-averse newsvendor model with two ordering opportunities and market information updating, International Journal of Production Economics, 140 (2012), 912-921.   Google Scholar

[14]

G. C. Mahata, A single period inventory model for incorporating two-ordering opportunities under imprecise demand information, International Journal of Industrial Engineering Computations, 2 (2011), 385-394.   Google Scholar

[15]

J. Miltenburg and C. Pong, Order quantities for style goods with two order opportunities and Bayesian updating of demand: Part 2-capacity constraints, International Journal of Production Research, 8 (2007), 1707-1723.   Google Scholar

[16]

J. V. Neuman and O. Morgenstern, Theory of Games and Economic Behavior, 2$^{nd}$ edition, Princeton university press, Princeton, 1994. Google Scholar

[17]

N. C. Petruzzi and M. Dada, Pricing and the newsvendor problem: A review with extensions, Operations Research, 2 (1999), 183-194.   Google Scholar

[18]

R. Pindyck, Irreversible investment, capacity choice, and the value of the firm, American Economic Review, 5 (1988), 969-985.   Google Scholar

[19]

Y. QinR. WangA. J. VakhariaY. Chen and M. M. H. Seref, The newsvendor problem: Review and directions for future research, European Journal of Operational Research, 213 (2011), 361-374.   Google Scholar

[20]

M. E. Schweitzer and G. P. Cachon, Decision bias in the newsvendor problem with a known demand distribution: experimental evidence, Management Science, 3 (2000), 404-420.   Google Scholar

[21]

G. H. Tannous, Capital budgeting for volume flexibility equipment, Decision Sciences, 2 (1996), 157-184.   Google Scholar

[22]

R. H. ThalerA. TverskyD. Kahneman and A Schwartz, The effect of myopia and loss aversion on risk taking: An experimental test, The Quarterly Journal of Economics, 112 (1997), 647-661.   Google Scholar

[23]

C. X. Wang and S. Webster, The loss-averse newsvendor problem, Omega, 37 (2009), 93-105.   Google Scholar

[24]

C. X. Wang, The loss-averse newsvendor game, International Journal of Production Economics, 124 (2010), 448-452.   Google Scholar

[25]

Q. ZhangD. ZhangY. Tsao and J. Luo, Optimal ordering policy in a two-stage supply chain with advance payment for stable supply capacity, International Journal of Production Economics, 177 (2016), 34-43.   Google Scholar

[26]

Y. ZhouX. ChenX. Xu and C. Yu, A multi-product newsvendor problem with budget and loss constraints, International Journal of Information Technology & Decision Making, 5 (2005), 1093-1110.   Google Scholar

[27]

Y. ZhouW. Qiu and Z. Wang, Product-portfolio Ordering Analysis with Update Information in the Two-echelon: Risk Decision-making Model, Systems Engineering-Theory & Practice, 28 (2008), 9-16.   Google Scholar

[28]

Y. ZhouR. YingX. Chen and Z. Wang, Two-product newsboy problem based on prospect theory, Journal of Management Sciences in China, 11 (2013), 17-29.   Google Scholar

Figure 1.  The Time Line of the Event
Table 1.  Updated Demand Information Values of Two products
$\ u^{IU}_{A1}\ $ $\ \sigma^{IU2}_{A1}\ $ $\ u^{IU}_{A2}\ $ $\ \sigma^{IU2}_{A2}\ $ $\ u^{IU}_{B1}\ $ $\ \sigma^{IU2}_{B1}\ $ $\ u^{IU}_{B2}\ $ $\ \sigma^{IU2}_{B2}\ $
200123.6940063.7220057.4440059.79
$\ u^{IU}_{A1}\ $ $\ \sigma^{IU2}_{A1}\ $ $\ u^{IU}_{A2}\ $ $\ \sigma^{IU2}_{A2}\ $ $\ u^{IU}_{B1}\ $ $\ \sigma^{IU2}_{B1}\ $ $\ u^{IU}_{B2}\ $ $\ \sigma^{IU2}_{B2}\ $
200123.6940063.7220057.4440059.79
Table 2.  Optimal Order Quantity with Different Psychological Reference Points and Information Updating
$\ \pi_0\ $ $\ x^{*}_{A1}\ $ $\ x^{*}_{B1}\ $ $\ x^{*}_{A2}\ $ $\ x^{*}_{B2}\ $ $\ U^*(\mathbf{x^*})\ $
02712814274293283.9
10002702784264282475.8
20002652734214271347.2
3000270268413427643.9
4000298280410403-235.7
5000315285460305-785.4
8000335290459303-1436.7
10000333285457302-2578.8
30000331283455301-3521.6
50000333288454300-4076.4
$\ \pi_0\ $ $\ x^{*}_{A1}\ $ $\ x^{*}_{B1}\ $ $\ x^{*}_{A2}\ $ $\ x^{*}_{B2}\ $ $\ U^*(\mathbf{x^*})\ $
02712814274293283.9
10002702784264282475.8
20002652734214271347.2
3000270268413427643.9
4000298280410403-235.7
5000315285460305-785.4
8000335290459303-1436.7
10000333285457302-2578.8
30000331283455301-3521.6
50000333288454300-4076.4
Table 3.  Optimal Order Quantity with Different Psychological Reference Points and No Information Updating
$\ \pi_0\ $ $\ x^{*}_{A1}\ $ $\ x^{*}_{B1}\ $ $\ x^{*}_{A2}\ $ $\ x^{*}_{B2}\ $ $\ U^*(\mathbf{x^*})\ $
0402315258.5853
1000362214250.1422
200037231623-32.983
300039241821-421.655
400041252020-1674.67
500043252218-1975.9
800045282315-3452.9
1000043272513-3987.0
3000041252612-5436.9
5000043272711-6475.8
$\ \pi_0\ $ $\ x^{*}_{A1}\ $ $\ x^{*}_{B1}\ $ $\ x^{*}_{A2}\ $ $\ x^{*}_{B2}\ $ $\ U^*(\mathbf{x^*})\ $
0402315258.5853
1000362214250.1422
200037231623-32.983
300039241821-421.655
400041252020-1674.67
500043252218-1975.9
800045282315-3452.9
1000043272513-3987.0
3000041252612-5436.9
5000043272711-6475.8
[1]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[2]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[3]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[4]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[5]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[6]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[7]

Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781

[8]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[9]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[10]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[11]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[12]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[13]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[14]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[15]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[16]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[17]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[18]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[19]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[20]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (116)
  • HTML views (693)
  • Cited by (0)

Other articles
by authors

[Back to Top]