\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A loss-averse two-product ordering model with information updating in two-echelon inventory system

The Paper is supported by NNSF grants (No. 71221061, 71210003, 71431006, 71471178, 71171201, 71671189) and NCET grant( No. NCET-11-0524)

Abstract Full Text(HTML) Figure(1) / Table(3) Related Papers Cited by
  • This paper integrates the prospect theory with two-product ordering problem and adopts Bayesian forecasting model under Brownian motion to propose a loss-averse two-product ordering model with demand information updating in a two-echelon inventory system. We also derive all psychological perceived revenue functions for sixteen supply-demand cases as well as the expected value functions and prospect value function for the loss-averse retailer. To solve this model, a Monte Carlo algorithm is presented to estimate the high dimensional integrals with curved polyhedral integral region of unknown volume. Numerical results show that the optimal order quantities of both high-risk product and low-risk product vary across different psychological reference points, which are also affected by information updating, and the loss-averse retailer benefits considerably from information updating. All results suggest that our model provides a better description of the retailer$'$s actual ordering behavior than existing models.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The Time Line of the Event

    Table 1.  Updated Demand Information Values of Two products

    $\ u^{IU}_{A1}\ $ $\ \sigma^{IU2}_{A1}\ $ $\ u^{IU}_{A2}\ $ $\ \sigma^{IU2}_{A2}\ $ $\ u^{IU}_{B1}\ $ $\ \sigma^{IU2}_{B1}\ $ $\ u^{IU}_{B2}\ $ $\ \sigma^{IU2}_{B2}\ $
    200123.6940063.7220057.4440059.79
     | Show Table
    DownLoad: CSV

    Table 2.  Optimal Order Quantity with Different Psychological Reference Points and Information Updating

    $\ \pi_0\ $ $\ x^{*}_{A1}\ $ $\ x^{*}_{B1}\ $ $\ x^{*}_{A2}\ $ $\ x^{*}_{B2}\ $ $\ U^*(\mathbf{x^*})\ $
    02712814274293283.9
    10002702784264282475.8
    20002652734214271347.2
    3000270268413427643.9
    4000298280410403-235.7
    5000315285460305-785.4
    8000335290459303-1436.7
    10000333285457302-2578.8
    30000331283455301-3521.6
    50000333288454300-4076.4
     | Show Table
    DownLoad: CSV

    Table 3.  Optimal Order Quantity with Different Psychological Reference Points and No Information Updating

    $\ \pi_0\ $ $\ x^{*}_{A1}\ $ $\ x^{*}_{B1}\ $ $\ x^{*}_{A2}\ $ $\ x^{*}_{B2}\ $ $\ U^*(\mathbf{x^*})\ $
    0402315258.5853
    1000362214250.1422
    200037231623-32.983
    300039241821-421.655
    400041252020-1674.67
    500043252218-1975.9
    800045282315-3452.9
    1000043272513-3987.0
    3000041252612-5436.9
    5000043272711-6475.8
     | Show Table
    DownLoad: CSV
  • [1] L. Abdel-MalekR. Montanari and L. C. Morales, Exact, approximate, and generic iterative models for the multi-product newsboy problem with budget constraint, International Journal of Production Economics, 2 (2004), 189-198. 
    [2] V. Agrawal and S. Seshadri, Impact of uncertainty and risk aversion on price and order quantity in the newsvendor problem, Manufacturing & Service Operations Management, 4 (2000), 410-423. 
    [3] S. Choi and A. Ruszczyński, A multi-product risk-averse newsvendor with exponential utility function, European Journal of Operational Research, 214 (2011), 78-84. 
    [4] A. DvoretzkyJ. Kiefer and J. Wolfowitz, The inventory problem: Ⅱ. Case of unknown distributions of demand, Econometrica: Journal of the Econometric Society, 20 (1952), 450-466. 
    [5] L. EeckhoudtC. Gollier and H. Schlesinger, The risk-averse (and prudent) newsboy, Management Science, 5 (1995), 786-794. 
    [6] G. Hadley and T. M. Whitin, Analysis of Inventory Systems, Prentice Hall, Upper Saddle River, 1994.
    [7] M. Joseph and K. Panos, On the complementary value of accurate demand information and production and supplier flexibility, Manufacturing & Service Operations Management, 2 (2002), 99-113. 
    [8] D. Kahneman and A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica, 2 (1979), 263-292. 
    [9] M. Khouja, The single-period (newsvendor) problem: Literature review and suggestions for future research, Omega, 5 (1999), 537-553. 
    [10] A. H. L. Lau and H. S. Lau, Decision models for single-period products with two ordering opportunities, International Journal of Production Economics, 5 (1998), 57-70. 
    [11] W. LiuS. Song and C. Wu, Impact of loss aversion on the newsvendor game with product substitution, International Journal of Production Economics, 141 (2013), 352-359. 
    [12] X. Long and J. Nasiry, Prospect theory explains newsvendor behavior: The role of reference points, Management Science, 61 (2014), 3009-3012. 
    [13] L. MaY. ZhaoW. XueT. Cheng and H. Yan, Loss-averse newsvendor model with two ordering opportunities and market information updating, International Journal of Production Economics, 140 (2012), 912-921. 
    [14] G. C. Mahata, A single period inventory model for incorporating two-ordering opportunities under imprecise demand information, International Journal of Industrial Engineering Computations, 2 (2011), 385-394. 
    [15] J. Miltenburg and C. Pong, Order quantities for style goods with two order opportunities and Bayesian updating of demand: Part 2-capacity constraints, International Journal of Production Research, 8 (2007), 1707-1723. 
    [16] J. V. Neuman and O. Morgenstern, Theory of Games and Economic Behavior, 2$^{nd}$ edition, Princeton university press, Princeton, 1994.
    [17] N. C. Petruzzi and M. Dada, Pricing and the newsvendor problem: A review with extensions, Operations Research, 2 (1999), 183-194. 
    [18] R. Pindyck, Irreversible investment, capacity choice, and the value of the firm, American Economic Review, 5 (1988), 969-985. 
    [19] Y. QinR. WangA. J. VakhariaY. Chen and M. M. H. Seref, The newsvendor problem: Review and directions for future research, European Journal of Operational Research, 213 (2011), 361-374. 
    [20] M. E. Schweitzer and G. P. Cachon, Decision bias in the newsvendor problem with a known demand distribution: experimental evidence, Management Science, 3 (2000), 404-420. 
    [21] G. H. Tannous, Capital budgeting for volume flexibility equipment, Decision Sciences, 2 (1996), 157-184. 
    [22] R. H. ThalerA. TverskyD. Kahneman and A Schwartz, The effect of myopia and loss aversion on risk taking: An experimental test, The Quarterly Journal of Economics, 112 (1997), 647-661. 
    [23] C. X. Wang and S. Webster, The loss-averse newsvendor problem, Omega, 37 (2009), 93-105. 
    [24] C. X. Wang, The loss-averse newsvendor game, International Journal of Production Economics, 124 (2010), 448-452. 
    [25] Q. ZhangD. ZhangY. Tsao and J. Luo, Optimal ordering policy in a two-stage supply chain with advance payment for stable supply capacity, International Journal of Production Economics, 177 (2016), 34-43. 
    [26] Y. ZhouX. ChenX. Xu and C. Yu, A multi-product newsvendor problem with budget and loss constraints, International Journal of Information Technology & Decision Making, 5 (2005), 1093-1110. 
    [27] Y. ZhouW. Qiu and Z. Wang, Product-portfolio Ordering Analysis with Update Information in the Two-echelon: Risk Decision-making Model, Systems Engineering-Theory & Practice, 28 (2008), 9-16. 
    [28] Y. ZhouR. YingX. Chen and Z. Wang, Two-product newsboy problem based on prospect theory, Journal of Management Sciences in China, 11 (2013), 17-29. 
  • 加载中

Figures(1)

Tables(3)

SHARE

Article Metrics

HTML views(978) PDF downloads(275) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return