A Nash bargaining solution for Bayesian collective choice problem with general type and action spaces is built in this paper. Such solution generalizes the bargaining solution proposed by Myerson who uses finite sets to characterize the type and action spaces. However, in the real economics and industries, types and actions can hardly be characterized by a finite set in some circumstances. Hence our generalization expands the applications of bargaining theory in economic and industrial models.
Citation: |
[1] |
X. Brusset and P. J. Agrell, Intrinsic impediments to category captainship collaboration, Journal of Industrial and Management Optimization, 13 (2017), 113-133.
doi: 10.3934/jimo.2016007.![]() ![]() |
[2] |
W. S. Chang, B. Chen and T. C. Salmon, An investigation of the average bid mechanism for procurement auctions, Management Science, 61 (2015), 1237-1254.
doi: 10.1287/mnsc.2013.1893.![]() ![]() |
[3] |
J. C. Harsanyi and R. Selten, A generalized Nash solution for two-person bargaining games with incomplete information, Management Science, 18 (1972), 80-106.
doi: 10.1287/mnsc.18.5.80.![]() ![]() |
[4] |
B. Holmström and R. B. Myerson, Efficient and durable decision rules with incomplete information, Econometrica, 51 (1983), 1799-1819.
![]() |
[5] |
M. Huang, X. Qian, S. C. Fang and X. Wang, Winner determination for risk aversion buyers in multi-attribute reverse auction, Omega, 59 (2016), 184-200.
doi: 10.1016/j.omega.2015.06.007.![]() ![]() |
[6] |
E. Kalai and M. Smorodinsky, Other solutions to Nash's bargaining problem, Econometrica, 43 (1975), 513-518.
doi: 10.2307/1914280.![]() ![]() |
[7] |
T. Kruse and P. Strack, Optimal stopping with private information, Journal of Economic Theory, 159 (2015), 702-727.
doi: 10.1016/j.jet.2015.03.001.![]() ![]() |
[8] |
R. B. Myerson, Incentive compatibility and the bargaining problem, Econometrica, 47 (1979), 61-73.
doi: 10.2307/1912346.![]() ![]() |
[9] |
R. B. Myerson, Cooperative games with imcomplete information, International Journal of Game Theory, 13 (1984), 69-96.
doi: 10.1007/BF01769817.![]() ![]() |
[10] |
R. B. Myerson, Two-person bargaining problems with incomplete information, Econometrica, 52 (1984), 461-487.
doi: 10.2307/1911499.![]() ![]() |
[11] |
J. F. Nash, The bargaining problem, Econometrica, 18 (1950), 155-162.
doi: 10.2307/1907266.![]() ![]() |
[12] |
Ö. Özer and W. Wei, Strategic commitments for an optimal capacity decision under asymmetric forecast information, Management Science, 52 (2006), 1238-1257.
![]() |
[13] |
M. A. Perles and M. Maschler, The super-additive solution for the Nash bargaining game, International Journal of Game Theory, 10 (1981), 163-193.
doi: 10.1007/BF01755963.![]() ![]() |
[14] |
H. L. Royden and P. Fitzpatrick, Real Analysis, 3$^{ed}$ edition, Macmillan, New York, 1988.
![]() |
[15] |
F. Weidner, The generalized Nash bargaining solution and incentive compatible mechanisms, International Journal of Game Theory, 21 (1992), 109-129.
doi: 10.1007/BF01245455.![]() ![]() |