• Previous Article
    Modeling and analyzing the chaotic behavior in supply chain networks: a control theoretic approach
  • JIMO Home
  • This Issue
  • Next Article
    A variational inequality approach for constrained multifacility Weber problem under gauge
July  2018, 14(3): 1105-1122. doi: 10.3934/jimo.2018001

Portfolio procurement policies for budget-constrained supply chains with option contracts and external financing

1. 

School of Management and Economics, University of Electronic Science and Technology of China, Chengdu, China

2. 

Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

3. 

Department of Marketing and International Business, Valdosta State University, Valdosta, USA

* Corresponding author: Xu Chen, E-mail: xchenxchen@263.net, Tel: +86-28-83206622

Received  October 2015 Revised  September 2017 Published  July 2018 Early access  January 2018

This study investigates a budget-constrained retailer's optimal financing and portfolio order policies in a supply chain with option contracts. To this end, we develop two analytical models: a basic model with wholesale price contracts as the benchmark and a model with option contracts. Each model considers both the financing scenario and the no-financing scenario. Our analyses show that the retailer uses wholesale price contracts for procurement, instead of option contracts, when its budget is extremely tight. The retailer starts to use a combination of these two types of contracts when the budget constraint is relieved. As the budget increases, the retailer adjusts the procurement ratio through both types until it can implement the optimal ordering policy with an adequate budget. In addition, the condition for seeking external financing is determined by the retailer's initial budget, financing cost, and profit margin.

Citation: Benyong Hu, Xu Chen, Felix T. S. Chan, Chao Meng. Portfolio procurement policies for budget-constrained supply chains with option contracts and external financing. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1105-1122. doi: 10.3934/jimo.2018001
References:
[1]

D. Barnes-SchusterY. Bassok and R. Anupindi, Coordination and flexibility in supply contracts with options, Manufacturing & Service Operations Management, 4 (2002), 171-207.  doi: 10.1287/msom.4.3.171.7754.

[2]

A. Burnetas and P. Ritchken, Option pricing with downward-sloping demand curves: The case of supply chain options, Management Science, 51 (2005), 566-580.  doi: 10.1287/mnsc.1040.0342.

[3]

J. A. Buzacott and R. Q. Zhang, Inventory management with asset-based financing, Management Science, 50 (2004), 1274-1292.  doi: 10.1287/mnsc.1040.0278.

[4]

G. P. Cachon and M. A. Lariviere, Capacity choice and allocation: Strategic behavior and supply chain performance, Management Science, 45 (1999), 1091-1108.  doi: 10.1287/mnsc.45.8.1091.

[5]

R. Caldentey and X. F. Chen, Handbook of Integrated Risk Management in Global Supply Chains: The Role of Financing Service in Procurement Contracts (eds. P. Kouvelis, O. Boyabatli, L. Dong and R. Li), John Wiley & Sons, Inc., New York, 2011.

[6]

R. Caldentey and M. B. Haugh, Supply contracts with financial hedging, Operations Research, 57 (2009), 47-65.  doi: 10.1287/opre.1080.0521.

[7]

Y. K. Che and I. Gale, The optimal mechanism for selling to a budget-constrained buyer, Journal of Economic Theory, 92 (2000), 198-233.  doi: 10.1006/jeth.1999.2639.

[8]

X. Chen and Z. J. Shen, An analysis of a supply chain with options contracts and service requirements, IIE Transactions, 44 (2012), 805-819.  doi: 10.1080/0740817X.2011.649383.

[9]

X. ChenG. Hao and L. Li, Channel coordination with a loss-averse retailer and option contracts, International Journal of Production Economics, 150 (2014), 52-57.  doi: 10.1016/j.ijpe.2013.12.004.

[10]

X. Chen and X. Wang, Free or bundled: Channel selection decisions under different power structures, OMEGA-International Journal of Management Science, 53 (2015), 11-20.  doi: 10.1016/j.omega.2014.11.008.

[11]

X. ChenX. Wang and X. Jiang, The impact of power structure on retail service supply chain with an O2O mixed channel, Journal of the Operational Research Society, 67 (2016), 294-301.  doi: 10.1057/jors.2015.6.

[12]

X. ChenX. Wang and H. Chan, Manufacturer and retailer coordination for environmental and economic competitiveness: A power perspective, Transportation Research Part E: Logistics and Transportation Review, 97 (2017), 268-281.  doi: 10.1016/j.tre.2016.11.007.

[13]

X. ChenN. Wan and X. Wang, Flexibility and coordination in a supply chain with bidirectional option contracts and service requirement, International Journal of Production Economics, 193 (2017), 183-192.  doi: 10.1016/j.ijpe.2017.07.013.

[14]

X. ChenX. Wang and K. Gong, The effect of bidimensional power structure on supply chain decisions and performance, IEEE Transactions on Systems Man and Cybernetics: Systems, PP (2017), 1-16.  doi: 10.1109/TSMC.2017.2704445.

[15]

X. Chen and G. Wan, The effect of financing on a budget-constrained supply chain under wholesale price contract, Asia-Pacific Journal of Operational Research, 28 (2011), 457-485.  doi: 10.1142/S0217595911003193.

[16]

K. Chen and T. Xiao, Reordering policy and coordination of a supply chain with a loss-averse retailer, Journal of Industrial and Management Optimization, 9 (2013), 827-853.  doi: 10.3934/jimo.2013.9.827.

[17]

M. Dada and Q. Hu, Financing newsvendor inventory, Operations Research Letters, 36 (2008), 569-573.  doi: 10.1016/j.orl.2008.06.004.

[18]

K. L. Donohue, Efficient supply contracts for fashion goods with forecast updating and two production modes, Management Science, 46 (2000), 1397-1411.  doi: 10.1287/mnsc.46.11.1397.12088.

[19]

G. Eppen and A. Iyer, Backup agreements in fashion buying-the value of upstream flexibility, Management Science, 43 (1997), 1469-1484.  doi: 10.1287/mnsc.43.11.1469.

[20]

M. Erkoc and S. D. Wu, Managing high-tech capacity expansion via reservation contracts, Production and Operations Management, 14 (2005), 232-251.  doi: 10.1111/j.1937-5956.2005.tb00021.x.

[21]

D. Farlow, G. Schmidt and A. Tsay, Supplier management at Sun Microsystems (A), Palo Alto, CA: Stanford University Graduate School of Business, OIT-16-A and OIT-16-B, (1996).

[22]

S. Graves and T. de Kok, Handbooks in Operations Research and Management Science, North-Holland/Elsevier, 2003.

[23]

H. L. LeeV. Padmanabhan and S. Whang, The bullwhip effect in supply chains, IEEE Engineering Management Review, 43 (2015), 108-117.  doi: 10.1109/EMR.2015.7123235.

[24]

R. Levaggi, Optimal procurement contracts under a binding budget constraint, Public Choice, 101 (1999), 23-37.  doi: 10.1023/A:1018311920072.

[25]

Z. LiuL. Chen and L. Li, Risk hedging in a supply chain: Option vs. price discount, International Journal of Production Economics, 151 (2014), 112-120.  doi: 10.1016/j.ijpe.2014.01.019.

[26]

Z. LuoX. Chen and J. Chen, Optimal pricing policies for differentiated brands under different supply chain power structures, European Journal of Operational Research, 259 (2017), 437-451.  doi: 10.1016/j.ejor.2016.10.046.

[27]

Z. Luo, X. Chen and M. Kai, The effect of customer value and power structure on product choice and pricing decisions, OMEGA-International Journal of Management Science, Forthcoming, (2017). doi: 10.1016/j.omega.2017.06.003.

[28]

J. Nasiry and I. Popescu, Dynamic pricing with loss-averse consumers and peak-end anchoring, Operations Research, 59 (2011), 1361-1368.  doi: 10.1287/opre.1110.0952.

[29]

S. Ng, Supply Chain Management at Solectron, Presentation[C] // Industrial Symposium on Supply Chain Management, Stanford University, Stanford, CA, (1997).

[30]

Ö. Özer and W. Wei, Strategic commitments for an optimal capacity decision under asymmetric forecast information, Management Science, 52 (2006), 1238-1257.  doi: 10.1287/mnsc.1060.0521.

[31]

S. I. Park and J. S. Kim, A mathematical model for a capacity reservation contract, Applied Mathematical Modelling, 38 (2014), 1866-1880.  doi: 10.1016/j.apm.2013.10.005.

[32]

P. H. Ritchken and C. S. Tapiero, Contingent claims contracting for purchasing decisions in inventory management, Operations Research, 34 (1986), 864-870.  doi: 10.1287/opre.34.6.864.

[33]

S. Saghafian and M. P. Van Oyen, The value of flexible backup suppliers and disruption risk information: newsvendor analysis with recourse, IIE Transactions, 44 (2012), 834-867.  doi: 10.1080/0740817X.2012.654846.

[34]

N. SongX. Huang and Y. Xie, Impact of reorder option in supply chain coordination, Journal of Industrial and Management Optimization, 13 (2017), 447-473.  doi: 10.3934/jimo.2016026.

[35]

A. Tsay, The quantity flexibility contract and supplier-customer incentives, Management Science, 45 (1999), 1339-1358.  doi: 10.1287/mnsc.45.10.1339.

[36]

C. Wang and X. Chen, Optimal ordering policy for a price-setting newsvendor with option contracts under demand uncertainty, International Journal of Production Research, 53 (2015), 6279-6293.  doi: 10.1080/00207543.2015.1053577.

[37]

C. Wang and X. Chen, Option pricing and coordination in the fresh produce supply chain with portfolio contracts, Annals of Operations Research, 248 (2017), 471-491.  doi: 10.1007/s10479-016-2167-7.

[38]

C. Wang and X. Chen, Joint order and pricing decisions for fresh produce with put option contracts, Journal of the Operational Research Society, Forthcoming, (2017), 1-11.  doi: 10.1057/s41274-017-0228-1.

[39]

X. Wang and L. Liu, Coordination in a retailer-led supply chain through option contract, International Journal of Production Economics, 110 (2007), 115-127.  doi: 10.1016/j.ijpe.2007.02.022.

[40]

C. X. Wang and S. Webster, The loss-averse newsvendor problem, OMEGA-International Journal of Management Science, 37 (2009), 93-105.  doi: 10.1016/j.omega.2006.08.003.

[41]

D. J. WuP. R. Kleindorfer and Y. Sun, Optimal capacity expansion in the presence of capacity options, Decision Support Systems, 40 (2005), 553-561.  doi: 10.1016/j.dss.2004.09.005.

[42]

J. H. Wu, Quantity flexibility contracts under Bayesian updating, Computer & Operations Research, 32 (2005), 1267-1288.  doi: 10.1016/j.cor.2003.11.004.

[43]

X. Xu and J. R. Birge, Operational decisions, capital structure, and managerial compensation: A news vendor perspective, The Engineering Economist, 53 (2008), 173-196.  doi: 10.1080/00137910802262887.

[44]

Y. ZhaoL. Ma and G. Xie, Coordination of supply chains with bidirectional option contracts, Contract Analysis and Design for Supply Chains with Stochastic Demand, 234 (2016), 115-129.  doi: 10.1007/978-1-4899-7633-8_5.

show all references

References:
[1]

D. Barnes-SchusterY. Bassok and R. Anupindi, Coordination and flexibility in supply contracts with options, Manufacturing & Service Operations Management, 4 (2002), 171-207.  doi: 10.1287/msom.4.3.171.7754.

[2]

A. Burnetas and P. Ritchken, Option pricing with downward-sloping demand curves: The case of supply chain options, Management Science, 51 (2005), 566-580.  doi: 10.1287/mnsc.1040.0342.

[3]

J. A. Buzacott and R. Q. Zhang, Inventory management with asset-based financing, Management Science, 50 (2004), 1274-1292.  doi: 10.1287/mnsc.1040.0278.

[4]

G. P. Cachon and M. A. Lariviere, Capacity choice and allocation: Strategic behavior and supply chain performance, Management Science, 45 (1999), 1091-1108.  doi: 10.1287/mnsc.45.8.1091.

[5]

R. Caldentey and X. F. Chen, Handbook of Integrated Risk Management in Global Supply Chains: The Role of Financing Service in Procurement Contracts (eds. P. Kouvelis, O. Boyabatli, L. Dong and R. Li), John Wiley & Sons, Inc., New York, 2011.

[6]

R. Caldentey and M. B. Haugh, Supply contracts with financial hedging, Operations Research, 57 (2009), 47-65.  doi: 10.1287/opre.1080.0521.

[7]

Y. K. Che and I. Gale, The optimal mechanism for selling to a budget-constrained buyer, Journal of Economic Theory, 92 (2000), 198-233.  doi: 10.1006/jeth.1999.2639.

[8]

X. Chen and Z. J. Shen, An analysis of a supply chain with options contracts and service requirements, IIE Transactions, 44 (2012), 805-819.  doi: 10.1080/0740817X.2011.649383.

[9]

X. ChenG. Hao and L. Li, Channel coordination with a loss-averse retailer and option contracts, International Journal of Production Economics, 150 (2014), 52-57.  doi: 10.1016/j.ijpe.2013.12.004.

[10]

X. Chen and X. Wang, Free or bundled: Channel selection decisions under different power structures, OMEGA-International Journal of Management Science, 53 (2015), 11-20.  doi: 10.1016/j.omega.2014.11.008.

[11]

X. ChenX. Wang and X. Jiang, The impact of power structure on retail service supply chain with an O2O mixed channel, Journal of the Operational Research Society, 67 (2016), 294-301.  doi: 10.1057/jors.2015.6.

[12]

X. ChenX. Wang and H. Chan, Manufacturer and retailer coordination for environmental and economic competitiveness: A power perspective, Transportation Research Part E: Logistics and Transportation Review, 97 (2017), 268-281.  doi: 10.1016/j.tre.2016.11.007.

[13]

X. ChenN. Wan and X. Wang, Flexibility and coordination in a supply chain with bidirectional option contracts and service requirement, International Journal of Production Economics, 193 (2017), 183-192.  doi: 10.1016/j.ijpe.2017.07.013.

[14]

X. ChenX. Wang and K. Gong, The effect of bidimensional power structure on supply chain decisions and performance, IEEE Transactions on Systems Man and Cybernetics: Systems, PP (2017), 1-16.  doi: 10.1109/TSMC.2017.2704445.

[15]

X. Chen and G. Wan, The effect of financing on a budget-constrained supply chain under wholesale price contract, Asia-Pacific Journal of Operational Research, 28 (2011), 457-485.  doi: 10.1142/S0217595911003193.

[16]

K. Chen and T. Xiao, Reordering policy and coordination of a supply chain with a loss-averse retailer, Journal of Industrial and Management Optimization, 9 (2013), 827-853.  doi: 10.3934/jimo.2013.9.827.

[17]

M. Dada and Q. Hu, Financing newsvendor inventory, Operations Research Letters, 36 (2008), 569-573.  doi: 10.1016/j.orl.2008.06.004.

[18]

K. L. Donohue, Efficient supply contracts for fashion goods with forecast updating and two production modes, Management Science, 46 (2000), 1397-1411.  doi: 10.1287/mnsc.46.11.1397.12088.

[19]

G. Eppen and A. Iyer, Backup agreements in fashion buying-the value of upstream flexibility, Management Science, 43 (1997), 1469-1484.  doi: 10.1287/mnsc.43.11.1469.

[20]

M. Erkoc and S. D. Wu, Managing high-tech capacity expansion via reservation contracts, Production and Operations Management, 14 (2005), 232-251.  doi: 10.1111/j.1937-5956.2005.tb00021.x.

[21]

D. Farlow, G. Schmidt and A. Tsay, Supplier management at Sun Microsystems (A), Palo Alto, CA: Stanford University Graduate School of Business, OIT-16-A and OIT-16-B, (1996).

[22]

S. Graves and T. de Kok, Handbooks in Operations Research and Management Science, North-Holland/Elsevier, 2003.

[23]

H. L. LeeV. Padmanabhan and S. Whang, The bullwhip effect in supply chains, IEEE Engineering Management Review, 43 (2015), 108-117.  doi: 10.1109/EMR.2015.7123235.

[24]

R. Levaggi, Optimal procurement contracts under a binding budget constraint, Public Choice, 101 (1999), 23-37.  doi: 10.1023/A:1018311920072.

[25]

Z. LiuL. Chen and L. Li, Risk hedging in a supply chain: Option vs. price discount, International Journal of Production Economics, 151 (2014), 112-120.  doi: 10.1016/j.ijpe.2014.01.019.

[26]

Z. LuoX. Chen and J. Chen, Optimal pricing policies for differentiated brands under different supply chain power structures, European Journal of Operational Research, 259 (2017), 437-451.  doi: 10.1016/j.ejor.2016.10.046.

[27]

Z. Luo, X. Chen and M. Kai, The effect of customer value and power structure on product choice and pricing decisions, OMEGA-International Journal of Management Science, Forthcoming, (2017). doi: 10.1016/j.omega.2017.06.003.

[28]

J. Nasiry and I. Popescu, Dynamic pricing with loss-averse consumers and peak-end anchoring, Operations Research, 59 (2011), 1361-1368.  doi: 10.1287/opre.1110.0952.

[29]

S. Ng, Supply Chain Management at Solectron, Presentation[C] // Industrial Symposium on Supply Chain Management, Stanford University, Stanford, CA, (1997).

[30]

Ö. Özer and W. Wei, Strategic commitments for an optimal capacity decision under asymmetric forecast information, Management Science, 52 (2006), 1238-1257.  doi: 10.1287/mnsc.1060.0521.

[31]

S. I. Park and J. S. Kim, A mathematical model for a capacity reservation contract, Applied Mathematical Modelling, 38 (2014), 1866-1880.  doi: 10.1016/j.apm.2013.10.005.

[32]

P. H. Ritchken and C. S. Tapiero, Contingent claims contracting for purchasing decisions in inventory management, Operations Research, 34 (1986), 864-870.  doi: 10.1287/opre.34.6.864.

[33]

S. Saghafian and M. P. Van Oyen, The value of flexible backup suppliers and disruption risk information: newsvendor analysis with recourse, IIE Transactions, 44 (2012), 834-867.  doi: 10.1080/0740817X.2012.654846.

[34]

N. SongX. Huang and Y. Xie, Impact of reorder option in supply chain coordination, Journal of Industrial and Management Optimization, 13 (2017), 447-473.  doi: 10.3934/jimo.2016026.

[35]

A. Tsay, The quantity flexibility contract and supplier-customer incentives, Management Science, 45 (1999), 1339-1358.  doi: 10.1287/mnsc.45.10.1339.

[36]

C. Wang and X. Chen, Optimal ordering policy for a price-setting newsvendor with option contracts under demand uncertainty, International Journal of Production Research, 53 (2015), 6279-6293.  doi: 10.1080/00207543.2015.1053577.

[37]

C. Wang and X. Chen, Option pricing and coordination in the fresh produce supply chain with portfolio contracts, Annals of Operations Research, 248 (2017), 471-491.  doi: 10.1007/s10479-016-2167-7.

[38]

C. Wang and X. Chen, Joint order and pricing decisions for fresh produce with put option contracts, Journal of the Operational Research Society, Forthcoming, (2017), 1-11.  doi: 10.1057/s41274-017-0228-1.

[39]

X. Wang and L. Liu, Coordination in a retailer-led supply chain through option contract, International Journal of Production Economics, 110 (2007), 115-127.  doi: 10.1016/j.ijpe.2007.02.022.

[40]

C. X. Wang and S. Webster, The loss-averse newsvendor problem, OMEGA-International Journal of Management Science, 37 (2009), 93-105.  doi: 10.1016/j.omega.2006.08.003.

[41]

D. J. WuP. R. Kleindorfer and Y. Sun, Optimal capacity expansion in the presence of capacity options, Decision Support Systems, 40 (2005), 553-561.  doi: 10.1016/j.dss.2004.09.005.

[42]

J. H. Wu, Quantity flexibility contracts under Bayesian updating, Computer & Operations Research, 32 (2005), 1267-1288.  doi: 10.1016/j.cor.2003.11.004.

[43]

X. Xu and J. R. Birge, Operational decisions, capital structure, and managerial compensation: A news vendor perspective, The Engineering Economist, 53 (2008), 173-196.  doi: 10.1080/00137910802262887.

[44]

Y. ZhaoL. Ma and G. Xie, Coordination of supply chains with bidirectional option contracts, Contract Analysis and Design for Supply Chains with Stochastic Demand, 234 (2016), 115-129.  doi: 10.1007/978-1-4899-7633-8_5.

Figure 1.  The structure of the optimal order policies
Figure 2.  The effects of option contracts without financing
Figure 3.  The effects of option contracts with financing
Figure 4.  Suppliers possible production quantity function
Table 1.  Nomenclature
NotationDescription
$D$Random variable for market demand with $D\geq0$
$f(x)$Probability density function for market demand
$F(x)$Cumulative distribution function for market demand, which is a continuous, strictly increasing and invertible function of $x$ with $F(x)=0$
$F^{-1}(x)$Inverse function of $F(x)$
$p$Product retail price ($/unit)
$c$Product manufacturing cost ($/unit)
$s$Product salvage value ($/unit)
$g$Retailer's shortage penalty ($/unit)
$w$Product wholesale price under wholesale price contracts ($/unit)
$w_1$Product wholesale price under option contracts ($/unit)
$b$Product option price ($/unit)
$w_2$Option exercise price ($/unit)
$q$Retailer's order quantity in the basic model
$q^1$Retailer's firm order quantity in the model with option contracts
$q^2$Retailer's option order quantity in the model with option contracts
$q^1+q^2$Retailer's portfolio order quantity in the model with option contracts, denoted as $q^1+q^2=q$
$Y$Retailer's initial budget
$H$Retailer's financing amount
$\lambda_i$Generalized Lagrange multiplier, $i=1, 2, 3$
$x^+$$x^+=max(0, x)$
$u$Mean of market demand, $u=E(D)$
$E(x)$Expected value of variable $x$
$min(x, y)$Minimum between $x$ and $y$
NotationDescription
$D$Random variable for market demand with $D\geq0$
$f(x)$Probability density function for market demand
$F(x)$Cumulative distribution function for market demand, which is a continuous, strictly increasing and invertible function of $x$ with $F(x)=0$
$F^{-1}(x)$Inverse function of $F(x)$
$p$Product retail price ($/unit)
$c$Product manufacturing cost ($/unit)
$s$Product salvage value ($/unit)
$g$Retailer's shortage penalty ($/unit)
$w$Product wholesale price under wholesale price contracts ($/unit)
$w_1$Product wholesale price under option contracts ($/unit)
$b$Product option price ($/unit)
$w_2$Option exercise price ($/unit)
$q$Retailer's order quantity in the basic model
$q^1$Retailer's firm order quantity in the model with option contracts
$q^2$Retailer's option order quantity in the model with option contracts
$q^1+q^2$Retailer's portfolio order quantity in the model with option contracts, denoted as $q^1+q^2=q$
$Y$Retailer's initial budget
$H$Retailer's financing amount
$\lambda_i$Generalized Lagrange multiplier, $i=1, 2, 3$
$x^+$$x^+=max(0, x)$
$u$Mean of market demand, $u=E(D)$
$E(x)$Expected value of variable $x$
$min(x, y)$Minimum between $x$ and $y$
[1]

Qiang Yan, Mingqiao Luan, Yu Lin, Fangyu Ye. Equilibrium strategies in a supply chain with capital constrained suppliers: The impact of external financing. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3027-3047. doi: 10.3934/jimo.2020106

[2]

Han Zhao, Bangdong Sun, Hui Wang, Shiji Song, Yuli Zhang, Liejun Wang. Optimization and coordination in a service-constrained supply chain with the bidirectional option contract under conditional value-at-risk. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022021

[3]

Jun Wu, Shouyang Wang, Wuyi Yue. Supply contract model with service level constraint. Journal of Industrial and Management Optimization, 2005, 1 (3) : 275-287. doi: 10.3934/jimo.2005.1.275

[4]

Jun Li, Hairong Feng, Kun-Jen Chung. Using the algebraic approach to determine the replenishment optimal policy with defective products, backlog and delay of payments in the supply chain management. Journal of Industrial and Management Optimization, 2012, 8 (1) : 263-269. doi: 10.3934/jimo.2012.8.263

[5]

Nina Yan, Baowen Sun. Comparative analysis of supply chain financing strategies between different financing modes. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1073-1087. doi: 10.3934/jimo.2015.11.1073

[6]

Na Song, Ximin Huang, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. Impact of reorder option in supply chain coordination. Journal of Industrial and Management Optimization, 2017, 13 (1) : 449-475. doi: 10.3934/jimo.2016026

[7]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial and Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[8]

Yafei Zu. Inter-organizational contract control of advertising strategies in the supply chain. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021126

[9]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial and Management Optimization, 2022, 18 (1) : 487-510. doi: 10.3934/jimo.2020165

[10]

Qiang Lin, Ying Peng, Ying Hu. Supplier financing service decisions for a capital-constrained supply chain: Trade credit vs. combined credit financing. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1731-1752. doi: 10.3934/jimo.2019026

[11]

Qiang Lin, Yang Xiao, Jingju Zheng. Selecting the supply chain financing mode under price-sensitive demand: Confirmed warehouse financing vs. trade credit. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2031-2049. doi: 10.3934/jimo.2020057

[12]

Guirong Pan, Bing Xue, Hongchun Sun. An optimization model and method for supply chain equilibrium management problem. Mathematical Foundations of Computing, 2022, 5 (2) : 145-156. doi: 10.3934/mfc.2022001

[13]

Kebing Chen, Tiaojun Xiao. Reordering policy and coordination of a supply chain with a loss-averse retailer. Journal of Industrial and Management Optimization, 2013, 9 (4) : 827-853. doi: 10.3934/jimo.2013.9.827

[14]

Zhiyuan Zhen, Honglin Yang, Wenyan Zhuo. Financing and ordering decisions in a capital-constrained and risk-averse supply chain for the monopolist and non-monopolist supplier. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021104

[15]

Shuaishuai Fu, Weida Chen, Junfei Ding, Dandan Wang. Optimal financing strategy in a closed-loop supply chain for construction machinery remanufacturing with emissions abatement. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022002

[16]

Kai Kang, Taotao Lu, Jing Zhang. Financing strategy selection and coordination considering risk aversion in a capital-constrained supply chain. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1737-1768. doi: 10.3934/jimo.2021042

[17]

Weihua Liu, Xinran Shen, Di Wang, Jingkun Wang. Order allocation model in logistics service supply chain with demand updating and inequity aversion: A perspective of two option contracts comparison. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3269-3295. doi: 10.3934/jimo.2020118

[18]

Kun Fan, Wenjin Mao, Hua Qu, Xinning Li, Meng Wang. Study on government subsidy in a two-level supply chain of direct-fired biomass power generation based on contract coordination. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022049

[19]

Amin Aalaei, Hamid Davoudpour. Two bounds for integrating the virtual dynamic cellular manufacturing problem into supply chain management. Journal of Industrial and Management Optimization, 2016, 12 (3) : 907-930. doi: 10.3934/jimo.2016.12.907

[20]

Yongtao Peng, Dan Xu, Eleonora Veglianti, Elisabetta Magnaghi. A product service supply chain network equilibrium considering risk management in the context of COVID-19 pandemic. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022094

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (497)
  • HTML views (980)
  • Cited by (2)

Other articles
by authors

[Back to Top]