[1]
|
T. Aslan, Simulated chaos in bullwhip effect, J. Manage. Marketing Logist, 2 (2015), 37-43.
doi: 10.17261/Pressacademia.2015111603.
|
[2]
|
K. J. Astrom and T. Hagglund, PID Controller: Theory, Design and Tuning, Instrument Society of America, 1995.
|
[3]
|
L. Chong and L. Sifeng, A robust optimization approach to reduce the bullwhip effect of supply chains with vendor order placement lead time delays in an uncertain environment, Appl. Math. Model., 37 (2013), 707-718.
doi: 10.1016/j.apm.2012.02.033.
|
[4]
|
C. F. Daganzo, A Theory of Supply Chains, Springer, Heidelberg, 2003.
|
[5]
|
C. F. Daganzo, On the stability of supply chain, Oper. Res., 52 (2004), 909-921.
|
[6]
|
J. Dejonckheere, S. M. Disney, M. R. Lambrecht and D. R. Towil, Transfer function analysis of forecasting induced bullwhip in supply chain, Int. Prod. Econ., 78 (2002), 133-144.
doi: 10.1016/S0925-5273(01)00084-6.
|
[7]
|
J. Dejonckheere, S. M. Disney, M. R. Lambrecht and D. R. Towil, Measuring and avoiding the bullwhip effect: A control theoretic approach, Eur. J. Oper. Res., 147 (2003), 567-590.
|
[8]
|
J. W. Forrester, Industrial Dynamics, MIT Press, Cambridge, 1961.
|
[9]
|
A. L. Fradkov and R. J. Evans, Control of chaos: Methods and applications in engineering, Annu. Rev. Contro, 29 (2005), 33-56.
doi: 10.1016/j.arcontrol.2005.01.001.
|
[10]
|
G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systems, Addison-Wesley, New York, 1986.
|
[11]
|
A. Goksu, U. E. Kocamaz and Y. Uyaroglu, Synchronization and control of chaos in supply chain management, Comput. Ind. Eng., 86 (2015), 107-115.
doi: 10.1016/j.cie.2014.09.025.
|
[12]
|
I. Heckmann, T. Comes and S. Nickel, A critical review on supply chain risk-definition, measure and modeling, Omega, 52 (2015), 119-132.
doi: 10.1016/j.omega.2014.10.004.
|
[13]
|
M. Hussain and P. R. Drake, Analysis of the bullwhip effect with order batching in multi-echelon supply chains, Inter. J. Phys. Distrib. Logist. Manage., 41 (2011), 972-990.
|
[14]
|
H. B. Hwarng and N. Xie, Understanding supply chain dynamics: A chaos perspective, Eur. J. Oper. Res., 184 (2008), 1163-1178.
doi: 10.1016/j.ejor.2006.12.014.
|
[15]
|
D. Ivanov and B. Sokolov, Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis and adaptation of performance under uncertainty, Eur. J. Oper. Res., 224 (2013), 313-323.
doi: 10.1016/j.ejor.2012.08.021.
|
[16]
|
W. E. Jarmain, Problems in Industrial Dynamics, MIT Press, Cambridge, 1963.
|
[17]
|
M. Jarsulic, A nonlinear model of the pure growth cycle, J. Econ. Behav. Organ., 22 (1993), 133-151.
doi: 10.1016/0167-2681(93)90060-3.
|
[18]
|
Y. Kristianto, P. Helo, J. Jiao and M. Sandhu, Adaptive fuzzy vendor managed inventory control for mitigating the Bullwhip effect in supply chains, Eur. J. Oper. Res., 216 (2012), 346-355.
doi: 10.1016/j.ejor.2011.07.051.
|
[19]
|
E. R. Larsen, J. D. W. Morecroft and J. S. Thomsen, Complex behavior in a production-distribution model, Eur. J. Oper. Res., 119 (1999), 61-74.
|
[20]
|
H. L. Lee, V. Padmanabhan and S. J. Whang, The bullwhip effect in supply chains, IEEE Engineering Management Review, 43 (2015), 108-117.
doi: 10.1109/EMR.2015.7123235.
|
[21]
|
M. Marra, W. Ho and J. S. Edwards, Supply chain knowledge management: A literature review, Expert Syst. Appl., 39 (2012), 6103-6110.
doi: 10.1016/j.eswa.2011.11.035.
|
[22]
|
A. Matsumoto, Can inventory chaos be welfare improving, Int. J. Prod. Econ., 71 (2001), 31-43.
doi: 10.1016/S0925-5273(00)00105-5.
|
[23]
|
E. Mosekilde and E. R. Larsen, Deterministic chaos in the beer production-distribution system, Syst. Dynam. Rev., 4 (1988), 131-147.
|
[24]
|
Y. Ouyang and X. Li, The bullwhip effect in supply chain networks, Eur. J. Oper. Res., 201 (2010), 799-810.
doi: 10.1016/j.ejor.2009.03.051.
|
[25]
|
Q. Qiang, K. Ke, T. Anderson and J. Dong, The closed-loop supply chain network with competition, distribution channel investment, and uncertainties, Omega, 41 (2013), 186-194.
doi: 10.1016/j.omega.2011.08.011.
|
[26]
|
C. A. G. Salcedo, A. I. Hernandez, R. Vilanova and J. H. Cuartas, Inventory control of supply chain: Mitigating the bullwhip effect by centralized and decentralized internal model control approach, Eur. J. Oper. Res., 224 (2013), 261-272.
doi: 10.1016/j.ejor.2012.07.029.
|
[27]
|
O. Sosnovtseva and E. Mosekilde, Torus destruction and chaos-chaos intermittency in a commodity distribution chain, Int. J. Bifurcat. Chaos, 7 (1997), 1225-1242.
doi: 10.1142/S0218127497000996.
|
[28]
|
V. L. M. Spiegler, M. M. Naim, D. R. Towill and J. Wikner, A technique to develop simplified and linearised models of complex dynamic supply chain systems, Eur. J. Oper. Res., 251 (2016), 888-903.
doi: 10.1016/j.ejor.2015.12.004.
|
[29]
|
J. C. Sprott, Chaos and Time -Series Analysis, Oxford University Press, 2003.
|
[30]
|
J. D. Sterman, Modeling managerial behavior: Misperceptions of feedback in a dynamic decision making experiment, Manage. Sci., 35 (1989), 321-339.
doi: 10.1287/mnsc.35.3.321.
|
[31]
|
M. J. Tarokh, N. Dabiri, A. H. Shokouhi and H. Shafiei, The effect of supply network configuration on occurring chaotic behavior in the retailer's inventory, J. Ind. Eng. Int., 7 (2011), 19-28.
|
[32]
|
J. S. Thmomsen, E. Mosekilde and J. D. Sterman, Hyper chaotic phenomena in dynamic decision making, Syst. Anal. Model. Sim., 9 (1992), 137-156.
|
[33]
|
S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems, Springer, New York, 1990.
doi: 10.1007/978-1-4757-4067-7.
|
[34]
|
G. P. Williams, Chaos Theory Tamed, Taylor & Francis, Landon, 1997.
|
[35]
|
Y. Wu and D. Z. Zhang, Demand fluctuation and chaotic behavior by interaction between customers and suppliers, Int. J. Prod. Econ., 107 (2007), 250-259.
|
[36]
|
Y. R. Wu, L. H. Huatuco, G. Frizelle and J. Smart, A method for analyzing operational complexity in supply chains, J. Oper. Res. Soc., 64 (2013), 654-667.
|