\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Modeling and analyzing the chaotic behavior in supply chain networks: a control theoretic approach

Abstract Full Text(HTML) Figure(15) / Table(3) Related Papers Cited by
  • Supply chain network (SCN) is a complex nonlinear system and may have a chaotic behavior. This network involves multiple entities that cooperate to satisfy customers demand and control network inventory. The policy of each entity in demand forecast and inventory control, and constraints and uncertainties of demand and supply (or production) significantly affects the complexity of its behavior. In this paper, a supply chain network is investigated that has two ordering policies: smooth ordering policy and a new policy that is designed based on proportional-derivative controller. Two forecast methods are used in the network: moving average (MA) forecast and exponential smoothing (ES) forecast. The supply capacity of each entity is constrained. The effect of demand elasticity, which is the result of marketing activities, is involved in the SCN. The inventory adjustment parameter and demand elasticity are the most important decision parameters in the SCN. Overall, four scenarios are designed for modeling and analyzing the chaotic behavior of the network and in each scenario the maximum Lyapunov exponent is calculated and drawn. Finally, the best scenario for decision-making is obtained.

    Mathematics Subject Classification: Primary: 35C20, 35P20; Secondary: 93D15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Schematic of the control system

    Figure 2.  Supply chain network (SCN)

    Figure 3.  Block diagram of entity operations

    Figure 4.  Time series plot of DTI and FTI in the stable state

    Figure 5.  Phase plot of DTI-FTI in the stable state

    Figure 6.  Time series plot of DTI and FTI in the chaotic state

    Figure 7.  Phase plot of DTI-FTI in the chaotic state

    Figure 8.  Effect of the demand elasticity by the ES forecast method

    Figure 9.  Effect of the inventory adjustment parameter by the ES forecast method

    Figure 10.  Effect of the demand elasticity by the MA forecast method

    Figure 11.  Effect of the inventory adjustment parameter by the MA forecast method

    Figure 12.  Effect of the demand elasticity by the ordering policy based on the PD controller

    Figure 13.  Effect of the inventory adjustment parameter by the ordering policy based on the PD controller

    Figure 14.  Comparison of all scenarios with $\lambda _\max \prec 0$

    Figure 15.  Comparison of all scenarios with 0 ≤ $\lambda _\max \prec 0.01$

    Table 1.  Decision-making scenarios

    Scenarios MA forecast ES forecast PD controller-based ordering Smooth ordering
    1 * *
    2 * *
    3 * *
    4 * *
     | Show Table
    DownLoad: CSV

    Table 2.  The initial data and parameters

    ItemValue
    Total initial inventory (in each level)24
    Total desired inventory (in factories)50
    Total desired inventory (in distributers)40
    Total desired inventory (in wholesalers)30
    Total desired inventory (in retailers)20
    Total initial supply line (in each level)12
    Production capacity, $c_{p} $100
    Basic demand, $d_{o} $12
    Discount threshold, $x_{T} $40
    Ratio of overstock and discount, $c$1.2
    Maximum discount, $r_{\max } $0.7
    Lead time, $\tau $5
    Fixed updating parameter for expectations, $\theta _{i} $0.4
    Number of periods used to compute the forecast, $T_{m} $4
    Inventory adjustment parameter, $\alpha $$0\mathrm{\le}$ $\alpha$ $\mathrm{\le}1$
    Derivative time, $\tau _{i}^{D} $$3\alpha$
    Elasticity of demand, $\beta $$0\mathrm{\le}\beta\mathrm{\le}2$
     | Show Table
    DownLoad: CSV

    Table 3.  The number of Maximum LEs in different ranges

    Scenario $ 0.02\le \lambda _{Max} $$0.01\le \lambda _{Max} \prec 0.02$$0\le \lambda _{Max} \prec 0.01$$\lambda _{Max} \prec 0$
    11599594452
    216012080440
    3202306120172
    420833687169
     | Show Table
    DownLoad: CSV
  • [1] T. Aslan, Simulated chaos in bullwhip effect, J. Manage. Marketing Logist, 2 (2015), 37-43.  doi: 10.17261/Pressacademia.2015111603.
    [2] K. J. Astrom and T. Hagglund, PID Controller: Theory, Design and Tuning, Instrument Society of America, 1995.
    [3] L. Chong and L. Sifeng, A robust optimization approach to reduce the bullwhip effect of supply chains with vendor order placement lead time delays in an uncertain environment, Appl. Math. Model., 37 (2013), 707-718.  doi: 10.1016/j.apm.2012.02.033.
    [4] C. F. Daganzo, A Theory of Supply Chains, Springer, Heidelberg, 2003.
    [5] C. F. Daganzo, On the stability of supply chain, Oper. Res., 52 (2004), 909-921. 
    [6] J. DejonckheereS. M. DisneyM. R. Lambrecht and D. R. Towil, Transfer function analysis of forecasting induced bullwhip in supply chain, Int. Prod. Econ., 78 (2002), 133-144.  doi: 10.1016/S0925-5273(01)00084-6.
    [7] J. DejonckheereS. M. DisneyM. R. Lambrecht and D. R. Towil, Measuring and avoiding the bullwhip effect: A control theoretic approach, Eur. J. Oper. Res., 147 (2003), 567-590. 
    [8] J. W. ForresterIndustrial Dynamics, MIT Press, Cambridge, 1961. 
    [9] A. L. Fradkov and R. J. Evans, Control of chaos: Methods and applications in engineering, Annu. Rev. Contro, 29 (2005), 33-56.  doi: 10.1016/j.arcontrol.2005.01.001.
    [10] G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systems, Addison-Wesley, New York, 1986.
    [11] A. GoksuU. E. Kocamaz and Y. Uyaroglu, Synchronization and control of chaos in supply chain management, Comput. Ind. Eng., 86 (2015), 107-115.  doi: 10.1016/j.cie.2014.09.025.
    [12] I. HeckmannT. Comes and S. Nickel, A critical review on supply chain risk-definition, measure and modeling, Omega, 52 (2015), 119-132.  doi: 10.1016/j.omega.2014.10.004.
    [13] M. Hussain and P. R. Drake, Analysis of the bullwhip effect with order batching in multi-echelon supply chains, Inter. J. Phys. Distrib. Logist. Manage., 41 (2011), 972-990. 
    [14] H. B. Hwarng and N. Xie, Understanding supply chain dynamics: A chaos perspective, Eur. J. Oper. Res., 184 (2008), 1163-1178.  doi: 10.1016/j.ejor.2006.12.014.
    [15] D. Ivanov and B. Sokolov, Control and system-theoretic identification of the supply chain dynamics domain for planning, analysis and adaptation of performance under uncertainty, Eur. J. Oper. Res., 224 (2013), 313-323.  doi: 10.1016/j.ejor.2012.08.021.
    [16] W. E. JarmainProblems in Industrial Dynamics, MIT Press, Cambridge, 1963. 
    [17] M. Jarsulic, A nonlinear model of the pure growth cycle, J. Econ. Behav. Organ., 22 (1993), 133-151.  doi: 10.1016/0167-2681(93)90060-3.
    [18] Y. KristiantoP. HeloJ. Jiao and M. Sandhu, Adaptive fuzzy vendor managed inventory control for mitigating the Bullwhip effect in supply chains, Eur. J. Oper. Res., 216 (2012), 346-355.  doi: 10.1016/j.ejor.2011.07.051.
    [19] E. R. LarsenJ. D. W. Morecroft and J. S. Thomsen, Complex behavior in a production-distribution model, Eur. J. Oper. Res., 119 (1999), 61-74. 
    [20] H. L. LeeV. Padmanabhan and S. J. Whang, The bullwhip effect in supply chains, IEEE Engineering Management Review, 43 (2015), 108-117.  doi: 10.1109/EMR.2015.7123235.
    [21] M. MarraW. Ho and J. S. Edwards, Supply chain knowledge management: A literature review, Expert Syst. Appl., 39 (2012), 6103-6110.  doi: 10.1016/j.eswa.2011.11.035.
    [22] A. Matsumoto, Can inventory chaos be welfare improving, Int. J. Prod. Econ., 71 (2001), 31-43.  doi: 10.1016/S0925-5273(00)00105-5.
    [23] E. Mosekilde and E. R. Larsen, Deterministic chaos in the beer production-distribution system, Syst. Dynam. Rev., 4 (1988), 131-147. 
    [24] Y. Ouyang and X. Li, The bullwhip effect in supply chain networks, Eur. J. Oper. Res., 201 (2010), 799-810.  doi: 10.1016/j.ejor.2009.03.051.
    [25] Q. QiangK. KeT. Anderson and J. Dong, The closed-loop supply chain network with competition, distribution channel investment, and uncertainties, Omega, 41 (2013), 186-194.  doi: 10.1016/j.omega.2011.08.011.
    [26] C. A. G. SalcedoA. I. HernandezR. Vilanova and J. H. Cuartas, Inventory control of supply chain: Mitigating the bullwhip effect by centralized and decentralized internal model control approach, Eur. J. Oper. Res., 224 (2013), 261-272.  doi: 10.1016/j.ejor.2012.07.029.
    [27] O. Sosnovtseva and E. Mosekilde, Torus destruction and chaos-chaos intermittency in a commodity distribution chain, Int. J. Bifurcat. Chaos, 7 (1997), 1225-1242.  doi: 10.1142/S0218127497000996.
    [28] V. L. M. SpieglerM. M. NaimD. R. Towill and J. Wikner, A technique to develop simplified and linearised models of complex dynamic supply chain systems, Eur. J. Oper. Res., 251 (2016), 888-903.  doi: 10.1016/j.ejor.2015.12.004.
    [29] J. C. SprottChaos and Time -Series Analysis, Oxford University Press, 2003. 
    [30] J. D. Sterman, Modeling managerial behavior: Misperceptions of feedback in a dynamic decision making experiment, Manage. Sci., 35 (1989), 321-339.  doi: 10.1287/mnsc.35.3.321.
    [31] M. J. TarokhN. DabiriA. H. Shokouhi and H. Shafiei, The effect of supply network configuration on occurring chaotic behavior in the retailer's inventory, J. Ind. Eng. Int., 7 (2011), 19-28. 
    [32] J. S. ThmomsenE. Mosekilde and J. D. Sterman, Hyper chaotic phenomena in dynamic decision making, Syst. Anal. Model. Sim., 9 (1992), 137-156. 
    [33] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems, Springer, New York, 1990. doi: 10.1007/978-1-4757-4067-7.
    [34] G. P. Williams, Chaos Theory Tamed, Taylor & Francis, Landon, 1997.
    [35] Y. Wu and D. Z. Zhang, Demand fluctuation and chaotic behavior by interaction between customers and suppliers, Int. J. Prod. Econ., 107 (2007), 250-259. 
    [36] Y. R. WuL. H. HuatucoG. Frizelle and J. Smart, A method for analyzing operational complexity in supply chains, J. Oper. Res. Soc., 64 (2013), 654-667. 
  • 加载中

Figures(15)

Tables(3)

SHARE

Article Metrics

HTML views(1413) PDF downloads(461) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return