July  2018, 14(3): 1179-1201. doi: 10.3934/jimo.2018005

A threshold-based risk process with a waiting period to pay dividends

1. 

Department of Statistics and Actuarial Science, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada

2. 

School of Risk and Actuarial Studies, Australian School of Business, University of New South Wales, Australia

3. 

Department of Statistics and Actuarial Science, University of Hong Kong, Pokfulam Road, Hong Kong, China

* Corresponding author: Jae-Kyung Woo

Received  April 2016 Revised  August 2017 Published  January 2018

Fund Project: This work has been supported by the Natural Sciences and Engineering Research Council of Canada, through the Discovery grant (#238675-2010-RGPIN) of Dr. Drekic.

In this paper, a modified dividend strategy is proposed by delaying dividend payments until the insurer's surplus level remains at or above a threshold level b for a predetermined period of time h. We consider two cases depending on whether the period of time sustained at or above level b is counted either consecutively or accumulatively (referred to as standard or cumulative waiting period). In both cases, we develop a recursive computational procedure to calculate the expected total discounted dividend payments made prior to ruin for a discrete-time Sparre Andersen renewal risk process. By varying the values of b and h, a numerical study of the trade-off effects between finite-time ruin probabilities and expected total discounted dividend payments is investigated under a variety of scenarios. Finally, a generalized threshold-based strategy with a delayed dividend payment rule is studied under the compound binomial model.

Citation: Steve Drekic, Jae-Kyung Woo, Ran Xu. A threshold-based risk process with a waiting period to pay dividends. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1179-1201. doi: 10.3934/jimo.2018005
References:
[1]

J. Akahori, Some formulae for a new type of path-dependent option, Annals of Appled Probability, 5 (1995), 383-388.  doi: 10.1214/aoap/1177004769.  Google Scholar

[2]

S. AsmussenF. Avram and M. Usabel, Erlangian approximations for finite-horizon ruin probabilities, ASTIN Bulletin, 32 (2002), 267-281.  doi: 10.2143/AST.32.2.1029.  Google Scholar

[3]

A. S. Alfa and S. Drekic, Algorithmic analysis of the Sparre Andersen model in discrete time, ASTIN Bulletin, 37 (2007), 293-317.  doi: 10.1017/S0515036100014872.  Google Scholar

[4]

B. Avanzi, Strategies for dividend distribution: A review, North American Actuarial Journal, 13 (2009), 217-251.  doi: 10.1080/10920277.2009.10597549.  Google Scholar

[5]

B. Bao, A note on the compound binomial model with randomized dividend strategy, Applied Mathematics and Computation, 194 (2007), 276-286.  doi: 10.1016/j.amc.2007.04.023.  Google Scholar

[6]

S. ChengH. U. Gerber and E. S. W. Shiu, Discounted probabilities and ruin theory in the compound binomial model, Insurance: Mathematics and Economics, 26 (2000), 239-250.  doi: 10.1016/S0167-6687(99)00053-0.  Google Scholar

[7]

M. ChesneyM. Jeanblanc-Picqué and M. Yor, Brownian excursions and Parisian barrier options, Advances in Applied Probability, 29 (1997), 165-184.  doi: 10.1017/S000186780002783X.  Google Scholar

[8]

E. C. K. Cheung and J. T. Y. Wong, On the dual risk model with Parisian implementation delays in dividend payments, European Journal of Operational Research, 257 (2017), 159-173.  doi: 10.1016/j.ejor.2016.09.018.  Google Scholar

[9]

H. CossetteD. Landriault and E. Marceau, Ruin probabilities in the discrete time renewal risk model, Insurance: Mathematics and Economics, 38 (2006), 309-323.  doi: 10.1016/j.insmatheco.2005.09.005.  Google Scholar

[10]

I. Czarna and Z. Palmowski, Ruin probability with Parisian delay for a spectrally negative Lévy process, Journal of Applied Probability, 48 (2011), 984-1002.  doi: 10.1017/S0021900200008573.  Google Scholar

[11]

I. Czarna and Z. Palmowski, Dividend problem with Parisian delay for a spectrally negative Lévy process, Journal of Optimization Theory and Applications, 161 (2014), 239-256.  doi: 10.1007/s10957-013-0283-y.  Google Scholar

[12]

I. CzarnaZ. Palmowski and P. Świątek, Discrete time ruin probability with Parisian delay, Scandinavian Actuarial Journal, 2017 (2017), 854-869.  doi: 10.1080/03461238.2016.1261734.  Google Scholar

[13]

A. Dassios, The distribution of the quantile of a Brownian motion with drift and the pricing of related path-dependent options, Annals of Appled Probability, 5 (1995), 389-398.  doi: 10.1214/aoap/1177004770.  Google Scholar

[14]

A. Dassios and S. Wu, On barrier strategy dividends with Parisian implementation delay for classical surplus processes, Insurance: Mathematics and Economics, 45 (2009), 195-202.  doi: 10.1016/j.insmatheco.2009.05.013.  Google Scholar

[15]

B. de Finetti, Su un'impostazione alternativa della teoria collettiva del rischio, Transactions of the XVth International Congress of Actuaries, 2 (1957), 433-443.   Google Scholar

[16]

D. C. M. Dickson, Some comments on the compound binomial model, ASTIN Bulletin, 24 (1994), 33-45.  doi: 10.2143/AST.24.1.2005079.  Google Scholar

[17]

D. C. M. Dickson and H. R. Water, Some optimal dividends problems, ASTIN Bulletin, 34 (2004), 49-74.  doi: 10.1017/S0515036100013878.  Google Scholar

[18]

S. Drekic and A. M. Mera, Ruin analysis of a threshold strategy in a discrete-time Sparre Andersen Model, Methodology and Computing in Applied Probability, 13 (2011), 723-747.  doi: 10.1007/s11009-010-9184-9.  Google Scholar

[19]

H. U. Gerber, Mathematical fun with compound binomial process, ASTIN Bulletin, 18 (1988), 161-168.  doi: 10.2143/AST.18.2.2014949.  Google Scholar

[20]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin, North American Actuarial Journal, 2 (1998), 48-78.  doi: 10.1080/10920277.1998.10595671.  Google Scholar

[21]

S.S. Kim and S. Drekic, Ruin analysis of a discrete-time dependent Sparre Andersen model with external financial activities and randomized dividends, Risks, 4 (2016), p2.  doi: 10.3390/risks4010002.  Google Scholar

[22]

B. KimH.-S. Kim and J. Kim, A risk model with paying dividends and random environment, Insurance: Mathematics and Economics, 42 (2008), 717-726.  doi: 10.1016/j.insmatheco.2007.08.001.  Google Scholar

[23]

D. Landriault, Randomized dividends in the compound binomial model with a general premium rate, Scandinavian Actuarial Journal, 2008 (2008), 1-15.   Google Scholar

[24]

D. LandriaultJ.-F. Renaud and X. Zhou, An insurance risk model with Parisian implementation delays, Methodology and Computing in Applied Probability, 16 (2014), 583-607.  doi: 10.1007/s11009-012-9317-4.  Google Scholar

[25]

M. A. LkabousI. Czarna and J.-F. Renaud, Parisian ruin for a refracted Lévy process, Insurance: Mathematics and Economics, 74 (2017), 153-163.  doi: 10.1016/j.insmatheco.2017.03.005.  Google Scholar

[26]

S. Li, On a class of discrete time renewal risk models, Scandinavian Actuarial Journal, 2005 (2005), 241-260.   Google Scholar

[27]

S. Li, Distributions of the surplus before ruin, the deficit at ruin and the claim causing ruin in a class of discrete time renewal risk models, Scandinavian Actuarial Journal, 2005 (2005), 271-284.   Google Scholar

[28]

R. LoeffenI. Czarna and Z. Palmowski, Parisian ruin probability for spectrally negative Lévy process, Bernoulli, 19 (2013), 599-609.  doi: 10.3150/11-BEJ404.  Google Scholar

[29]

K. P. Pavlova and G. E. Willmot, The discrete stationary renewal risk model and the Gerber-Shiu discounted penalty function, Insurance: Mathematics and Economics, 35 (2004), 267-277.  doi: 10.2143/AST.32.2.1029.  Google Scholar

[30]

A. Pechtl, Some applications of occupation times of Brownian motion with drift in mathematical finance, Journal of Applied Mathematics and Decision Sciences, 3 (1999), 63-73.  doi: 10.1155/S1173912699000048.  Google Scholar

[31]

E. S. W. Shiu, The probability of eventual ruin in the compound binomial model, ASTIN Bulletin, 19 (1989), 179-190.  doi: 10.2143/AST.19.2.2014907.  Google Scholar

[32]

D. W. Sommer, The impact of firm risk on property-liability insurance prices, Journal of Risk and Insurance, 63 (1996), 501-514.  doi: 10.2307/253623.  Google Scholar

[33]

J. Tan and X. Yang, The compound binomial model with randomized decisions on paying dividends, Insurance: Mathematics and Economics, 39 (2006), 1-18.  doi: 10.1016/j.insmatheco.2006.01.001.  Google Scholar

[34]

G. Venter and A. Underwood, Value of risk reduction, Casualty Actuary Society E-Forum, 2 (2012), 1-19.   Google Scholar

[35]

G. E. Willmot, Ruin probabilities in the compound binomial model, Insurance: Mathematics and Economics, 12 (1993), 133-142.  doi: 10.1016/0167-6687(93)90823-8.  Google Scholar

[36]

J. T. Y. Wong and E. C. K. Cheung, On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps, Insurance: Mathematics and Economics, 65 (2015), 280-290.  doi: 10.1016/j.insmatheco.2015.10.001.  Google Scholar

[37]

J.-K. Woo, A generalized penalty function for a class of discrete renewal processes, Scandinavian Actuarial Journal, 2012 (2012), 130-152.   Google Scholar

[38]

X. Wu and S. Li, On the discounted penalty function in a discrete time renewal risk model with general interclaim times, Scandinavian Actuarial Journal, 2009 (2009), 281-294.   Google Scholar

show all references

References:
[1]

J. Akahori, Some formulae for a new type of path-dependent option, Annals of Appled Probability, 5 (1995), 383-388.  doi: 10.1214/aoap/1177004769.  Google Scholar

[2]

S. AsmussenF. Avram and M. Usabel, Erlangian approximations for finite-horizon ruin probabilities, ASTIN Bulletin, 32 (2002), 267-281.  doi: 10.2143/AST.32.2.1029.  Google Scholar

[3]

A. S. Alfa and S. Drekic, Algorithmic analysis of the Sparre Andersen model in discrete time, ASTIN Bulletin, 37 (2007), 293-317.  doi: 10.1017/S0515036100014872.  Google Scholar

[4]

B. Avanzi, Strategies for dividend distribution: A review, North American Actuarial Journal, 13 (2009), 217-251.  doi: 10.1080/10920277.2009.10597549.  Google Scholar

[5]

B. Bao, A note on the compound binomial model with randomized dividend strategy, Applied Mathematics and Computation, 194 (2007), 276-286.  doi: 10.1016/j.amc.2007.04.023.  Google Scholar

[6]

S. ChengH. U. Gerber and E. S. W. Shiu, Discounted probabilities and ruin theory in the compound binomial model, Insurance: Mathematics and Economics, 26 (2000), 239-250.  doi: 10.1016/S0167-6687(99)00053-0.  Google Scholar

[7]

M. ChesneyM. Jeanblanc-Picqué and M. Yor, Brownian excursions and Parisian barrier options, Advances in Applied Probability, 29 (1997), 165-184.  doi: 10.1017/S000186780002783X.  Google Scholar

[8]

E. C. K. Cheung and J. T. Y. Wong, On the dual risk model with Parisian implementation delays in dividend payments, European Journal of Operational Research, 257 (2017), 159-173.  doi: 10.1016/j.ejor.2016.09.018.  Google Scholar

[9]

H. CossetteD. Landriault and E. Marceau, Ruin probabilities in the discrete time renewal risk model, Insurance: Mathematics and Economics, 38 (2006), 309-323.  doi: 10.1016/j.insmatheco.2005.09.005.  Google Scholar

[10]

I. Czarna and Z. Palmowski, Ruin probability with Parisian delay for a spectrally negative Lévy process, Journal of Applied Probability, 48 (2011), 984-1002.  doi: 10.1017/S0021900200008573.  Google Scholar

[11]

I. Czarna and Z. Palmowski, Dividend problem with Parisian delay for a spectrally negative Lévy process, Journal of Optimization Theory and Applications, 161 (2014), 239-256.  doi: 10.1007/s10957-013-0283-y.  Google Scholar

[12]

I. CzarnaZ. Palmowski and P. Świątek, Discrete time ruin probability with Parisian delay, Scandinavian Actuarial Journal, 2017 (2017), 854-869.  doi: 10.1080/03461238.2016.1261734.  Google Scholar

[13]

A. Dassios, The distribution of the quantile of a Brownian motion with drift and the pricing of related path-dependent options, Annals of Appled Probability, 5 (1995), 389-398.  doi: 10.1214/aoap/1177004770.  Google Scholar

[14]

A. Dassios and S. Wu, On barrier strategy dividends with Parisian implementation delay for classical surplus processes, Insurance: Mathematics and Economics, 45 (2009), 195-202.  doi: 10.1016/j.insmatheco.2009.05.013.  Google Scholar

[15]

B. de Finetti, Su un'impostazione alternativa della teoria collettiva del rischio, Transactions of the XVth International Congress of Actuaries, 2 (1957), 433-443.   Google Scholar

[16]

D. C. M. Dickson, Some comments on the compound binomial model, ASTIN Bulletin, 24 (1994), 33-45.  doi: 10.2143/AST.24.1.2005079.  Google Scholar

[17]

D. C. M. Dickson and H. R. Water, Some optimal dividends problems, ASTIN Bulletin, 34 (2004), 49-74.  doi: 10.1017/S0515036100013878.  Google Scholar

[18]

S. Drekic and A. M. Mera, Ruin analysis of a threshold strategy in a discrete-time Sparre Andersen Model, Methodology and Computing in Applied Probability, 13 (2011), 723-747.  doi: 10.1007/s11009-010-9184-9.  Google Scholar

[19]

H. U. Gerber, Mathematical fun with compound binomial process, ASTIN Bulletin, 18 (1988), 161-168.  doi: 10.2143/AST.18.2.2014949.  Google Scholar

[20]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin, North American Actuarial Journal, 2 (1998), 48-78.  doi: 10.1080/10920277.1998.10595671.  Google Scholar

[21]

S.S. Kim and S. Drekic, Ruin analysis of a discrete-time dependent Sparre Andersen model with external financial activities and randomized dividends, Risks, 4 (2016), p2.  doi: 10.3390/risks4010002.  Google Scholar

[22]

B. KimH.-S. Kim and J. Kim, A risk model with paying dividends and random environment, Insurance: Mathematics and Economics, 42 (2008), 717-726.  doi: 10.1016/j.insmatheco.2007.08.001.  Google Scholar

[23]

D. Landriault, Randomized dividends in the compound binomial model with a general premium rate, Scandinavian Actuarial Journal, 2008 (2008), 1-15.   Google Scholar

[24]

D. LandriaultJ.-F. Renaud and X. Zhou, An insurance risk model with Parisian implementation delays, Methodology and Computing in Applied Probability, 16 (2014), 583-607.  doi: 10.1007/s11009-012-9317-4.  Google Scholar

[25]

M. A. LkabousI. Czarna and J.-F. Renaud, Parisian ruin for a refracted Lévy process, Insurance: Mathematics and Economics, 74 (2017), 153-163.  doi: 10.1016/j.insmatheco.2017.03.005.  Google Scholar

[26]

S. Li, On a class of discrete time renewal risk models, Scandinavian Actuarial Journal, 2005 (2005), 241-260.   Google Scholar

[27]

S. Li, Distributions of the surplus before ruin, the deficit at ruin and the claim causing ruin in a class of discrete time renewal risk models, Scandinavian Actuarial Journal, 2005 (2005), 271-284.   Google Scholar

[28]

R. LoeffenI. Czarna and Z. Palmowski, Parisian ruin probability for spectrally negative Lévy process, Bernoulli, 19 (2013), 599-609.  doi: 10.3150/11-BEJ404.  Google Scholar

[29]

K. P. Pavlova and G. E. Willmot, The discrete stationary renewal risk model and the Gerber-Shiu discounted penalty function, Insurance: Mathematics and Economics, 35 (2004), 267-277.  doi: 10.2143/AST.32.2.1029.  Google Scholar

[30]

A. Pechtl, Some applications of occupation times of Brownian motion with drift in mathematical finance, Journal of Applied Mathematics and Decision Sciences, 3 (1999), 63-73.  doi: 10.1155/S1173912699000048.  Google Scholar

[31]

E. S. W. Shiu, The probability of eventual ruin in the compound binomial model, ASTIN Bulletin, 19 (1989), 179-190.  doi: 10.2143/AST.19.2.2014907.  Google Scholar

[32]

D. W. Sommer, The impact of firm risk on property-liability insurance prices, Journal of Risk and Insurance, 63 (1996), 501-514.  doi: 10.2307/253623.  Google Scholar

[33]

J. Tan and X. Yang, The compound binomial model with randomized decisions on paying dividends, Insurance: Mathematics and Economics, 39 (2006), 1-18.  doi: 10.1016/j.insmatheco.2006.01.001.  Google Scholar

[34]

G. Venter and A. Underwood, Value of risk reduction, Casualty Actuary Society E-Forum, 2 (2012), 1-19.   Google Scholar

[35]

G. E. Willmot, Ruin probabilities in the compound binomial model, Insurance: Mathematics and Economics, 12 (1993), 133-142.  doi: 10.1016/0167-6687(93)90823-8.  Google Scholar

[36]

J. T. Y. Wong and E. C. K. Cheung, On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps, Insurance: Mathematics and Economics, 65 (2015), 280-290.  doi: 10.1016/j.insmatheco.2015.10.001.  Google Scholar

[37]

J.-K. Woo, A generalized penalty function for a class of discrete renewal processes, Scandinavian Actuarial Journal, 2012 (2012), 130-152.   Google Scholar

[38]

X. Wu and S. Li, On the discounted penalty function in a discrete time renewal risk model with general interclaim times, Scandinavian Actuarial Journal, 2009 (2009), 281-294.   Google Scholar

Figure 1.  Illustration of the threshold-based dividend strategy: Standard waiting period
Figure 2.  Illustration of the threshold-based dividend strategy: Cumulative waiting period
Figure 3.  Layering of the recursive algorithm for $V_i(u, m)$
Figure 4.  Plots of $V(10, 80)$ and $\psi(10, 80)$ under Distribution 1
Figure 5.  Plots of $V(10, 80)$ and $\psi(10, 80)$ under Distribution 2
Figure 6.  Plots of $V(10, 80)$ and $\psi(10, 80)$ under Distribution 3
Figure 7.  Plot of $V(10, 80)$ against $(h, b)$ under Distribution 2
Figure 8.  Plot of $V(10, 80)$ against $\psi(10, 80)$ under Distribution 2
Figure 9.  Convergence of $V(10, m)$ under Distribution 2
Figure 10.  Illustration of the generalized threshold-based dividend strategy
Figure 11.  Plot of $V(10,100)$ against $(h, b)$ under the generalized threshold-based dividend strategy
Figure 12.  Plot of $\psi(10,100)$ against $(h, b)$ under the generalized threshold-based dividend strategy
[1]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[2]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[3]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[4]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[5]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[6]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[7]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[8]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[9]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[10]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[11]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[12]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[13]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[14]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[15]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[16]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[17]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[18]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[19]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[20]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (108)
  • HTML views (830)
  • Cited by (1)

Other articles
by authors

[Back to Top]