October  2018, 14(4): 1323-1348. doi: 10.3934/jimo.2018009

Optimal investment and dividend payment strategies with debt management and reinsurance

1. 

School of Statistics and Information, Shanghai University of International Business and Economics, Shanghai 201620, China

2. 

Centre for Actuarial Studies, Department of Economics, The University of Melbourne, VIC 3010, Australia

3. 

School of Statistics, Faculty of Economics and Management, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China

* Corresponding author

Received  August 2016 Revised  October 2017 Published  January 2018

Fund Project: This work was supported by Program of Shanghai Subject Chief Scientist (14XD1401600), the 111 Project (B14019), National Natural Science Foundation of China (11601157,11601320,11571113,11231005,11501211), Research Grants Council of the Hong Kong Special Administrative Region (project No. HKU 17330816) and Faculty Research Grant by The University of Melbourne.

This paper derives the optimal debt ratio, investment and dividend payment strategies for an insurance company. The surplus process is jointly determined by the reinsurance strategies, debt levels, investment portfolios and unanticipated shocks. The objective is to maximize the total expected discounted utility of dividend payments in finite-time period subject to three control variables. The utility functions are chosen as the logarithmic and power utility functions. Using dynamic programming principle, the value function is the solution of a second-order nonlinear Hamilton-Jacobi-Bellman equation. The explicit solution of the value function is derived and the corresponding optimal debt ratio, investment and dividend payment strategies are obtained. In addition, the investment borrowing constraint, dividend payment constraint and impacts of reinsurance policies are considered and their impacts on the optimal strategies are analyzed. Further, to incorporating the interest rate risk, the problem is studied under a stochastic interest rate model.

Citation: Qian Zhao, Zhuo Jin, Jiaqin Wei. Optimal investment and dividend payment strategies with debt management and reinsurance. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1323-1348. doi: 10.3934/jimo.2018009
References:
[1]

H. Albrecher and S. Thonhauser, Optimality results for dividend problems in insurance, RACSAM-Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 103 (2009), 295-320.  doi: 10.1007/BF03191909.  Google Scholar

[2]

S. AsmussenB. Høgaard and M. Taksar, Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation, Finance and Stochastics, 4 (2000), 299-324.  doi: 10.1007/s007800050075.  Google Scholar

[3]

S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out, Insurance: Mathematics and Economics, 20 (1997), 1-15.  doi: 10.1016/S0167-6687(96)00017-0.  Google Scholar

[4]

P. Azcue and N. Muler, Optimal investment policy and dividend payment strategy in an insurance company, The Annals of Applied Probability, 20 (2010), 1253-1302.  doi: 10.1214/09-AAP643.  Google Scholar

[5]

Y. C. Chi and H. Meng, Optimal reinsurance arrangements in the presence of two reinsurers, Scandinavian Actuarial Journal, 5 (2014), 424-438.   Google Scholar

[6]

T. ChoulliM. Taksar and X. Y. Zhou, Excess-of-loss reinsurance for a company with debt liability and constraints on risk reduction, Quant. Finance, 1 (2001), 573-596.  doi: 10.1088/1469-7688/1/6/301.  Google Scholar

[7]

B. De Finetti, Su unimpostazione alternativa della teoria collettiva del rischio, Transactions of the XVth International Congress of Actuaries, 2 (1957), 433-443.   Google Scholar

[8]

W. H. Fleming and T. Pang, An application of stochastic control theory to financial economics, SIAM Journal of Control and Optimization, 43 (2004), 502-531.  doi: 10.1137/S0363012902419060.  Google Scholar

[9]

H. U. Gerber and E. S. W. Shiu, Optimal dividends: Analysis with Brownian motion, North American Actuarial Journal, 8 (2004), 1-20.  doi: 10.1080/10920277.2004.10596125.  Google Scholar

[10]

H. U. Gerber and E. S. W. Shiu, On optimal dividend strategies in the compound Poisson model, North American Actuarial Journal, 10 (2006), 76-93.  doi: 10.1080/10920277.2006.10596249.  Google Scholar

[11]

Z. JinH. Yang and G. Yin, Numerical methods for optimal dividend payment and investment strategies of regime-switching jump diffusion models with capital injections, Automatica, 49 (2013), 2317-2329.  doi: 10.1016/j.automatica.2013.04.043.  Google Scholar

[12]

Z. JinH. Yang and G. Yin, Optimal debt ratio and dividend payment strategies with reinsurance, Insurance: Mathematics and Economics, 64 (2015), 351-363.  doi: 10.1016/j.insmatheco.2015.07.005.  Google Scholar

[13]

N. Kulenko and H. Schimidli, An optimal dividend strategy in a Craḿer Lundberg model with capital injections, Insurance: Mathmatics and Economics, 43 (2008), 270-278.  doi: 10.1016/j.insmatheco.2008.05.013.  Google Scholar

[14]

Z. F. LiY. Zeng and Y. Z. Lai, Optimal time-consistent investment and reinsurance strategies for insurers under Heston's SV model, Insurance: Mathematics and Economics, 51 (2012), 191-203.  doi: 10.1016/j.insmatheco.2011.09.002.  Google Scholar

[15]

H. Meng and T. K. Siu, Optimal mixed impulse-equity insurance control problem with reinsurance, SIAM Journal on Control and Optimization, 49 (2011), 254-279.  doi: 10.1137/090773167.  Google Scholar

[16]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations Plenum Press, New York, 1992.  Google Scholar

[17]

Stein and L. Jerome, Stochastic Optimal Control and the U. S. Financial Debt Crisis Springer, New York, 2012.  Google Scholar

[18]

J. WeiH. Yang and R. Wang, Classical and impulse control for the optimization of dividend and proportional reinsurance policies with regime switching, Journal of Optimization Theory and Applications, 147 (2010), 358-377.  doi: 10.1007/s10957-010-9726-x.  Google Scholar

[19]

D. YaoH. Yang and R. Wang, Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs, European Journal of Operational Research, 211 (2011), 568-576.  doi: 10.1016/j.ejor.2011.01.015.  Google Scholar

[20]

G. YinH. Jin and Z. Jin, Numerical methods for portfolio selection with bounded constraints, J. Computational Appl. Math., 233 (2009), 564-581.  doi: 10.1016/j.cam.2009.08.055.  Google Scholar

[21]

X. Y. Zhou and G. Yin, Markowitz mean-variance portfolio selection with regime switching: A continuous-time model, SIAM J. Control Optim., 42 (2003), 1466-1482.  doi: 10.1137/S0363012902405583.  Google Scholar

[22]

M. Zhou and K. C. Yuen, Optimal reinsurance and dividend for a diffusion model with capital injection: Variance premium principle, Economic Modeling, 29 (2012), 198-207.  doi: 10.1016/j.econmod.2011.09.007.  Google Scholar

[23]

J. Zhu, Dividend optimization for a regime-switching diffusion model with restricted dividend rates, ASTIN Bulletin, 44 (2014), 459-494.  doi: 10.1017/asb.2014.2.  Google Scholar

show all references

References:
[1]

H. Albrecher and S. Thonhauser, Optimality results for dividend problems in insurance, RACSAM-Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 103 (2009), 295-320.  doi: 10.1007/BF03191909.  Google Scholar

[2]

S. AsmussenB. Høgaard and M. Taksar, Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation, Finance and Stochastics, 4 (2000), 299-324.  doi: 10.1007/s007800050075.  Google Scholar

[3]

S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out, Insurance: Mathematics and Economics, 20 (1997), 1-15.  doi: 10.1016/S0167-6687(96)00017-0.  Google Scholar

[4]

P. Azcue and N. Muler, Optimal investment policy and dividend payment strategy in an insurance company, The Annals of Applied Probability, 20 (2010), 1253-1302.  doi: 10.1214/09-AAP643.  Google Scholar

[5]

Y. C. Chi and H. Meng, Optimal reinsurance arrangements in the presence of two reinsurers, Scandinavian Actuarial Journal, 5 (2014), 424-438.   Google Scholar

[6]

T. ChoulliM. Taksar and X. Y. Zhou, Excess-of-loss reinsurance for a company with debt liability and constraints on risk reduction, Quant. Finance, 1 (2001), 573-596.  doi: 10.1088/1469-7688/1/6/301.  Google Scholar

[7]

B. De Finetti, Su unimpostazione alternativa della teoria collettiva del rischio, Transactions of the XVth International Congress of Actuaries, 2 (1957), 433-443.   Google Scholar

[8]

W. H. Fleming and T. Pang, An application of stochastic control theory to financial economics, SIAM Journal of Control and Optimization, 43 (2004), 502-531.  doi: 10.1137/S0363012902419060.  Google Scholar

[9]

H. U. Gerber and E. S. W. Shiu, Optimal dividends: Analysis with Brownian motion, North American Actuarial Journal, 8 (2004), 1-20.  doi: 10.1080/10920277.2004.10596125.  Google Scholar

[10]

H. U. Gerber and E. S. W. Shiu, On optimal dividend strategies in the compound Poisson model, North American Actuarial Journal, 10 (2006), 76-93.  doi: 10.1080/10920277.2006.10596249.  Google Scholar

[11]

Z. JinH. Yang and G. Yin, Numerical methods for optimal dividend payment and investment strategies of regime-switching jump diffusion models with capital injections, Automatica, 49 (2013), 2317-2329.  doi: 10.1016/j.automatica.2013.04.043.  Google Scholar

[12]

Z. JinH. Yang and G. Yin, Optimal debt ratio and dividend payment strategies with reinsurance, Insurance: Mathematics and Economics, 64 (2015), 351-363.  doi: 10.1016/j.insmatheco.2015.07.005.  Google Scholar

[13]

N. Kulenko and H. Schimidli, An optimal dividend strategy in a Craḿer Lundberg model with capital injections, Insurance: Mathmatics and Economics, 43 (2008), 270-278.  doi: 10.1016/j.insmatheco.2008.05.013.  Google Scholar

[14]

Z. F. LiY. Zeng and Y. Z. Lai, Optimal time-consistent investment and reinsurance strategies for insurers under Heston's SV model, Insurance: Mathematics and Economics, 51 (2012), 191-203.  doi: 10.1016/j.insmatheco.2011.09.002.  Google Scholar

[15]

H. Meng and T. K. Siu, Optimal mixed impulse-equity insurance control problem with reinsurance, SIAM Journal on Control and Optimization, 49 (2011), 254-279.  doi: 10.1137/090773167.  Google Scholar

[16]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations Plenum Press, New York, 1992.  Google Scholar

[17]

Stein and L. Jerome, Stochastic Optimal Control and the U. S. Financial Debt Crisis Springer, New York, 2012.  Google Scholar

[18]

J. WeiH. Yang and R. Wang, Classical and impulse control for the optimization of dividend and proportional reinsurance policies with regime switching, Journal of Optimization Theory and Applications, 147 (2010), 358-377.  doi: 10.1007/s10957-010-9726-x.  Google Scholar

[19]

D. YaoH. Yang and R. Wang, Optimal dividend and capital injection problem in the dual model with proportional and fixed transaction costs, European Journal of Operational Research, 211 (2011), 568-576.  doi: 10.1016/j.ejor.2011.01.015.  Google Scholar

[20]

G. YinH. Jin and Z. Jin, Numerical methods for portfolio selection with bounded constraints, J. Computational Appl. Math., 233 (2009), 564-581.  doi: 10.1016/j.cam.2009.08.055.  Google Scholar

[21]

X. Y. Zhou and G. Yin, Markowitz mean-variance portfolio selection with regime switching: A continuous-time model, SIAM J. Control Optim., 42 (2003), 1466-1482.  doi: 10.1137/S0363012902405583.  Google Scholar

[22]

M. Zhou and K. C. Yuen, Optimal reinsurance and dividend for a diffusion model with capital injection: Variance premium principle, Economic Modeling, 29 (2012), 198-207.  doi: 10.1016/j.econmod.2011.09.007.  Google Scholar

[23]

J. Zhu, Dividend optimization for a regime-switching diffusion model with restricted dividend rates, ASTIN Bulletin, 44 (2014), 459-494.  doi: 10.1017/asb.2014.2.  Google Scholar

[1]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[2]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[3]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[4]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[5]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[6]

Brandy Rapatski, James Yorke. Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences & Engineering, 2009, 6 (1) : 135-143. doi: 10.3934/mbe.2009.6.135

[7]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[8]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[9]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[10]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[11]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[12]

Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208

[13]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[14]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[15]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[16]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[17]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[18]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[19]

Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020127

[20]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (311)
  • HTML views (1207)
  • Cited by (2)

Other articles
by authors

[Back to Top]