October  2018, 14(4): 1565-1577. doi: 10.3934/jimo.2018021

Frequency $H_{2}/H_{∞}$ optimizing control for isolated microgrid based on IPSO algorithm

Key Lab of Industrial Computer Control Engineering of Hebei Province, College of Electric Engineering, Yanshan University, Qinhuangdao 066004, China

* Corresponding author: Zhong-Qiang Wu

Received  February 2017 Revised  August 2017 Published  January 2018

Fund Project: The first author is supported by the Hebei Natural Science(F2016203006).

Affected by the fluctuation of wind and load, large frequency change will occur in independently islanded wind-diesel complementary microgrid. In order to suppress disturbance and ensure the normal operation of microgrid, a $H_{2}/H_{∞}$ controller optimized by improved particle swarm algorithm is designed to control the frequency of microgrid. $H_{2}/H_{∞}$ hybrid control can well balance the robustness and the performance of system. Particle swarm algorithm is improved. Adaptive method is used to adjust the inertia weight, and cloud fuzzy deduction is used to determine the learning factor. Improved particle swarm algorithm can solve the problem of local extremum, so the global optimal goal can be achieved. It is used to optimize $H_{2}/H_{∞}$ controller, so as to overcome the conservative property of solution by linear matrix inequality and improve the adaptive ability of controller. Simulation results show that with a $H_{2}/H_{∞}$ controller optimized by improved particle swarm algorithm, the frequency fluctuations caused by the wind and load is decreased, and the safety and stable operation of microgrid is guaranteed.

Citation: Zhong-Qiang Wu, Xi-Bo Zhao. Frequency $H_{2}/H_{∞}$ optimizing control for isolated microgrid based on IPSO algorithm. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1565-1577. doi: 10.3934/jimo.2018021
References:
[1]

C. W. AhnJ. An and J. C. Yoo, Estimation of particle swarm distribution algorithms: Combining the benefits of PSO and EDAs, Information Sciences, 192 (2012), 109-119.   Google Scholar

[2]

H. BaekJ. Ryu and J. Oh, Optimal design of multi-storage network for combined sewer overflow management using a diversity-guided, cyclic-networking particle swarm optimizer-A case study in the Gunja subcatchment area, Korea, Expert Systems with Applications, 42 (2015), 6966-6975.   Google Scholar

[3]

B. XuD. Chen and H. Zhang, Hamiltonian model and dynamic analyses for a hydro-turbine governing system with fractional item and time-lag, Commun Nonlinear Sci Numer Simulat, 47 (2017), 35-47.   Google Scholar

[4]

W. DuQ. Jiang and J. Chen, Frequency Control Strategy of Distributed Generations Based on Virtual Inertia in a Microgrid, Automation of Electric Power Systems, 35 (2012), 26-31.   Google Scholar

[5]

H. DuanQ. Luo and Y. Shi, Hybrid particle swarm optimization and genetic algorithm for multi-UAV Formation Reconfiguration, IEEE Computational Intelligence Magazine, 8 (2013), 16-27.   Google Scholar

[6]

M. El-Abd, Preventing premature convergence in a PSO and EDA hybrid, IEEE Congress on Evolutionary Computation, (2009), 3060-3066.   Google Scholar

[7]

M. Iqbal and M. A. M. De Oca, An estimation of distribution particle swarm optimization algorithm, Springer Berlin Heidelberg, German, 4150 (2006), 72-83.   Google Scholar

[8]

H. J. JiaY. Qi and Y. F. Mu, Frequency response of autonomous microgrid based on family-friendly controllable loads, Science China Technological Sciences, 56 (2013), 693-702.   Google Scholar

[9]

H. LiB. FuC. YangB. Zhao and X. Tang, Research on microgrid and its application in China, Proceedings of the CSEE, 32 (2012), 24-31.   Google Scholar

[10]

Y. Mi and C. Wang, Frequency optimization control for isolated photovoltaic-diesel hybrid microgrid based on load estimation, Proceedings of the CSEE, 33 (2013), 115-121.   Google Scholar

[11]

H. LiD. ChenH. ZhanC. Wu and X. Wang, Hamiltonian analysis of a hydro-energy generation system in the transient of sudden load increasing, Applied Energy, 185 (2017), 244-253.   Google Scholar

[12]

J. J. LiangA. K. Qin and P. N. Suganthan, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Transactions on Evolutionary Computation, 10 (2006), 281-295.   Google Scholar

[13]

H. LiuL. Gao and Q. Pan, A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flowshop scheduling problem, Expert Systems with Applications, 38 (2011), 4348-4360.   Google Scholar

[14]

M. LiuL. Guo and C. Wang, A coordinated operating control strategy for hybrid isolated microgrid including wind power, photovoltaic system, diesel generator, and battery storage, Dianli Xitong Zidonghua(Automation of Electric Power Systems), 36 (2012), 19-24.   Google Scholar

[15]

X. MaY. WuH. Fang and Y. Sun, Optimal sizing of hybrid solar-wind distributed generation in an islanded microgrid using improved bacterial foraging algorithm, Proceedings of the CSEE, 31 (2012), 17-25.   Google Scholar

[16]

Y. MaP. Yang and J. Wu, Hybrid control strategy of islanded microgrid with numerous distributed generators, Automation of Electric Power Systems, 39 (2015), 104-109.   Google Scholar

[17]

A. Nandar and C. Supriyadi, Robust PI control of smart controllable load for frequency stabilization of microgrid power system, Renewable Energy, 56 (2013), 16-23.   Google Scholar

[18]

M. J. Sanjari and G. B. Gharehpetian, Game-theoretic approach to cooperative control of distributed energy resources in islanded microgrid considering voltage and frequency stability, Neural Computing and Applications, 25 (2014), 343-351.   Google Scholar

[19]

C. ShenW. Gu and Z. Wu, An Underfrequency Load Shedding Strategy for Islanded Microgrid, Automation of Electric Power Systems, 35 (2011), 47-52.   Google Scholar

[20]

L. SuJ. Zhang and L. Wang, Study on some key problems and technique related to microgrid, Power System Protection and Control, 19 (2010), 235-239.   Google Scholar

[21]

F. Van den Bergh and A. P. Engelbrecht, A cooperative approach to particle swarm optimization, IEEE Transactions on Evolutionary Computation, 8 (2004), 225-239.   Google Scholar

[22]

J. Wang, Genetic particle swarm optimization based on estimation of distribution, Springer Berlin Heidelberg, German, 4688 (2007), 287-296.   Google Scholar

[23]

H. Wang and G. Li, Control strategy of microgrid with differend DG types, Electric Power Automation Equipment, 32 (2012), 19-23.   Google Scholar

[24] D. Wang, The optimal control theory ofand, Harbin Institute of Technology Press, Harbin, 2001.   Google Scholar
[25]

B. WuD.-Y. Chen and H. Zhang, Modeling and stability analysis of a fractional-order francis hydro-turbine governing system, Chaos, Solitons and Fractals, 75 (2015), 50-61.  doi: 10.1016/j.chaos.2015.01.025.  Google Scholar

[26]

X. WuX. YinX. Song and J. Wang, Reactive current allocation and control strategies improvement of low voltage ride though for doubly fed induction wind turbine generation system, High Voltage Apparatus, 49 (2013), 142-149.   Google Scholar

[27]

B. XuF. WangD. Chen and H. Zhang, Hamiltonian modeling of multi-hydro-turbine governing systems with sharing common penstock and dynamic analyses under shock load, Energy Conversion and Management, 108 (2016), 478-487.   Google Scholar

[28]

B. XuD. ChenH. Zhang and R. Zhou, Dynamic analysis and modeling of a novel fractional-order hydro-turbine-generator unit, Nonlinear Dynamics, 81 (2015), 1263-1274.   Google Scholar

[29]

B. XueM. Zhang and W. N. Browne, Particle swarm optimization for feature selection in classification: A multi-objective approach, IEEE Trans Cybern, 43 (2013), 1656-1671.   Google Scholar

[30] L. Yu, Robust Control: The Processing of the Linear Matrix Inequality Approach, Tsinghua University Press, Beijing, 2002.   Google Scholar
[31]

Q. ZhangC. Peng and Y. Chen, A Control Strategy for Parallel Operation of Multi-inverters in Microgrid, Proceedings of the CSEE, 32 (2012), 126-132.   Google Scholar

show all references

References:
[1]

C. W. AhnJ. An and J. C. Yoo, Estimation of particle swarm distribution algorithms: Combining the benefits of PSO and EDAs, Information Sciences, 192 (2012), 109-119.   Google Scholar

[2]

H. BaekJ. Ryu and J. Oh, Optimal design of multi-storage network for combined sewer overflow management using a diversity-guided, cyclic-networking particle swarm optimizer-A case study in the Gunja subcatchment area, Korea, Expert Systems with Applications, 42 (2015), 6966-6975.   Google Scholar

[3]

B. XuD. Chen and H. Zhang, Hamiltonian model and dynamic analyses for a hydro-turbine governing system with fractional item and time-lag, Commun Nonlinear Sci Numer Simulat, 47 (2017), 35-47.   Google Scholar

[4]

W. DuQ. Jiang and J. Chen, Frequency Control Strategy of Distributed Generations Based on Virtual Inertia in a Microgrid, Automation of Electric Power Systems, 35 (2012), 26-31.   Google Scholar

[5]

H. DuanQ. Luo and Y. Shi, Hybrid particle swarm optimization and genetic algorithm for multi-UAV Formation Reconfiguration, IEEE Computational Intelligence Magazine, 8 (2013), 16-27.   Google Scholar

[6]

M. El-Abd, Preventing premature convergence in a PSO and EDA hybrid, IEEE Congress on Evolutionary Computation, (2009), 3060-3066.   Google Scholar

[7]

M. Iqbal and M. A. M. De Oca, An estimation of distribution particle swarm optimization algorithm, Springer Berlin Heidelberg, German, 4150 (2006), 72-83.   Google Scholar

[8]

H. J. JiaY. Qi and Y. F. Mu, Frequency response of autonomous microgrid based on family-friendly controllable loads, Science China Technological Sciences, 56 (2013), 693-702.   Google Scholar

[9]

H. LiB. FuC. YangB. Zhao and X. Tang, Research on microgrid and its application in China, Proceedings of the CSEE, 32 (2012), 24-31.   Google Scholar

[10]

Y. Mi and C. Wang, Frequency optimization control for isolated photovoltaic-diesel hybrid microgrid based on load estimation, Proceedings of the CSEE, 33 (2013), 115-121.   Google Scholar

[11]

H. LiD. ChenH. ZhanC. Wu and X. Wang, Hamiltonian analysis of a hydro-energy generation system in the transient of sudden load increasing, Applied Energy, 185 (2017), 244-253.   Google Scholar

[12]

J. J. LiangA. K. Qin and P. N. Suganthan, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Transactions on Evolutionary Computation, 10 (2006), 281-295.   Google Scholar

[13]

H. LiuL. Gao and Q. Pan, A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flowshop scheduling problem, Expert Systems with Applications, 38 (2011), 4348-4360.   Google Scholar

[14]

M. LiuL. Guo and C. Wang, A coordinated operating control strategy for hybrid isolated microgrid including wind power, photovoltaic system, diesel generator, and battery storage, Dianli Xitong Zidonghua(Automation of Electric Power Systems), 36 (2012), 19-24.   Google Scholar

[15]

X. MaY. WuH. Fang and Y. Sun, Optimal sizing of hybrid solar-wind distributed generation in an islanded microgrid using improved bacterial foraging algorithm, Proceedings of the CSEE, 31 (2012), 17-25.   Google Scholar

[16]

Y. MaP. Yang and J. Wu, Hybrid control strategy of islanded microgrid with numerous distributed generators, Automation of Electric Power Systems, 39 (2015), 104-109.   Google Scholar

[17]

A. Nandar and C. Supriyadi, Robust PI control of smart controllable load for frequency stabilization of microgrid power system, Renewable Energy, 56 (2013), 16-23.   Google Scholar

[18]

M. J. Sanjari and G. B. Gharehpetian, Game-theoretic approach to cooperative control of distributed energy resources in islanded microgrid considering voltage and frequency stability, Neural Computing and Applications, 25 (2014), 343-351.   Google Scholar

[19]

C. ShenW. Gu and Z. Wu, An Underfrequency Load Shedding Strategy for Islanded Microgrid, Automation of Electric Power Systems, 35 (2011), 47-52.   Google Scholar

[20]

L. SuJ. Zhang and L. Wang, Study on some key problems and technique related to microgrid, Power System Protection and Control, 19 (2010), 235-239.   Google Scholar

[21]

F. Van den Bergh and A. P. Engelbrecht, A cooperative approach to particle swarm optimization, IEEE Transactions on Evolutionary Computation, 8 (2004), 225-239.   Google Scholar

[22]

J. Wang, Genetic particle swarm optimization based on estimation of distribution, Springer Berlin Heidelberg, German, 4688 (2007), 287-296.   Google Scholar

[23]

H. Wang and G. Li, Control strategy of microgrid with differend DG types, Electric Power Automation Equipment, 32 (2012), 19-23.   Google Scholar

[24] D. Wang, The optimal control theory ofand, Harbin Institute of Technology Press, Harbin, 2001.   Google Scholar
[25]

B. WuD.-Y. Chen and H. Zhang, Modeling and stability analysis of a fractional-order francis hydro-turbine governing system, Chaos, Solitons and Fractals, 75 (2015), 50-61.  doi: 10.1016/j.chaos.2015.01.025.  Google Scholar

[26]

X. WuX. YinX. Song and J. Wang, Reactive current allocation and control strategies improvement of low voltage ride though for doubly fed induction wind turbine generation system, High Voltage Apparatus, 49 (2013), 142-149.   Google Scholar

[27]

B. XuF. WangD. Chen and H. Zhang, Hamiltonian modeling of multi-hydro-turbine governing systems with sharing common penstock and dynamic analyses under shock load, Energy Conversion and Management, 108 (2016), 478-487.   Google Scholar

[28]

B. XuD. ChenH. Zhang and R. Zhou, Dynamic analysis and modeling of a novel fractional-order hydro-turbine-generator unit, Nonlinear Dynamics, 81 (2015), 1263-1274.   Google Scholar

[29]

B. XueM. Zhang and W. N. Browne, Particle swarm optimization for feature selection in classification: A multi-objective approach, IEEE Trans Cybern, 43 (2013), 1656-1671.   Google Scholar

[30] L. Yu, Robust Control: The Processing of the Linear Matrix Inequality Approach, Tsinghua University Press, Beijing, 2002.   Google Scholar
[31]

Q. ZhangC. Peng and Y. Chen, A Control Strategy for Parallel Operation of Multi-inverters in Microgrid, Proceedings of the CSEE, 32 (2012), 126-132.   Google Scholar

Figure 1.  Independent wind-diesel microgrid
Figure 2.  The dynamic model of microgrid
Figure 3.  Flow chart of PSO algorithm
Figure 4.  Cloud membership function of $D(i, {g}_{best})$
Figure 5.  Cloud membership functions of $c_{1}$, $c_{2}$
Figure 6.  Load and maximum power output of wind in microgrid
Figure 7.  Output power of diesel generator
Figure 8.  Frequency deviation of microgrid (with $H_{2}/H_{\infty}$ control based on LMI)
Figure 9.  Frequency deviation of microgrid (with $H_{2}/H_{\infty}$ control based on PSO algorithm)
Figure 10.  Frequency deviation of microgrid (with $H_{2}/H_{\infty}$ control based on IPSO algorithm)
Table 1.  The fuzzy rules of $c_{1}$ and $c_{2}$
Rules $D(i, {g}_{best})$ $c_{1}$ $c_{2}$
1 Near Small Big
2 Middle Middle Middle
3 Far Big Small
Rules $D(i, {g}_{best})$ $c_{1}$ $c_{2}$
1 Near Small Big
2 Middle Middle Middle
3 Far Big Small
[1]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[2]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[3]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[4]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[5]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[6]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[7]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[8]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[9]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[10]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[11]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

[12]

Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

[13]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[14]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[15]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[16]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[17]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[18]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[19]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (118)
  • HTML views (1029)
  • Cited by (0)

Other articles
by authors

[Back to Top]