
- Previous Article
- JIMO Home
- This Issue
-
Next Article
Optimal impulse control of a mean-reverting inventory with quadratic costs
Times until service completion and abandonment in an M/M/$ m$ preemptive-resume LCFS queue with impatient customers
Professor Emeritus, University of Tsukuba, Tsukuba Science City, Ibaraki 305-8573, Japan |
We consider an M/M/$ m$ preemptive-resume last-come first-served (PR-LCFS) queue without exogenous priority classes of impatient customers. We focus on analyzing the time interval from the arrival to either service completion or abandonment for an arbitrary customer. We formulate the problem as a one-dimensional birth-and-death process with two absorbing states, and consider the first passage times in this process. We give explicit expressions for the probabilities of service completion and abandonment. Furthermore, we present sets of recursive computational formulas for calculating the mean and second moment of the times until service completion and abandonment. The two special cases of a preemptive-loss system and an ordinary M/M/$ m$ queue with patient customers only, both incorporating the preemptive LCFS discipline, are treated separately. We show some numerical examples in order to demonstrate the computation of theoretical formulas.
References:
[1] |
R. B. Cooper,
Introduction to Queueing Theory, 2$ ^{nd}$ edition, Elsevier North Holland, New York, 1981. |
[2] |
N. Gautam, Analysis of Queues: Methods and Applications, CRC Press, Boca Raton, Florida, 2012. Google Scholar |
[3] |
B. V. Gnedenko and I. N. Kovalenko, Introduction to Queueing Theory, 2$ ^{nd}$ edition, revised and supplemented. Translated by Samuel Kotz, Springer-Verlag, New York, 1994. Google Scholar |
[4] |
F. Iravani and B. Balcio$ {\tilde {\rm g}}$lu,
On priority queues with impatient customers, Queueing Systems, 58 (2008), 239-260.
doi: 10.1007/s11134-008-9069-6. |
[5] |
D. L. Jagerman,
Difference Equations with Applications to Queues, Marcel Dekker, New York, 2000. |
[6] |
O. Jouini,
Analysis of a last come first served queueing system with customer abandonment, Computers & Operations Research, 39 (2012), 3040-3045.
doi: 10.1016/j.cor.2012.03.009. |
[7] |
O. Jouini and A. Roubos, On multiple priority multi-server queues with impatience, Journal of the Operational Research Society, 65 (2014), 616-632. Google Scholar |
[8] |
G. P. Klimow,
Bedienungsprozesse, Birkhäuser, Basel, 1979. |
[9] |
V. G. Kulkarni,
Modeling and Analysis of Stochastic Systems, Chapman & Hall, Boca Raton, Florida, 1995. |
[10] |
A. Mandelbaum and S. Zeltyn, Service engineering in action: The Palm/Erlang-A queue, with applications to call centers, in Advances in Services Innovations (eds. D. Spath and K. -P. Fähnrich), Springer, (2007), 17-45 Google Scholar |
[11] |
A. Myskja and O. Espvik (editors), Tore Olaus Engset, 1865-1943, The Man Behind the Formula, Tapir Academic Press, Trondheim, Norway, 2002 Google Scholar |
[12] |
C. Palm, Etude des délais d'attente, Ericsson Technics, 5 (1937), 39-56, cited in [14]. Google Scholar |
[13] |
C. Palm, Research on telephone traffic carried by full availability groups, Tele, 1 (1957), 1-107 (English translation of results first published in 1946 in Swedish in the same journal, then entitled Tekniska Meddelanden från Kungliga Telegrafstyrelsen.), cited in [10] and [14]. Google Scholar |
[14] |
J. Riordan,
Stochastic Service Systems, John Wiley & Sons, New York, 1962. |
[15] |
S. Subba Rao,
Queuing with balking and reneging in M/G/1 systems, Metrika, (1967/68), 173-188.
doi: 10.1007/BF02613493. |
[16] |
H. Takagi,
Waiting time in the M/M/$ m / ( m + c ) $ queue with impatient customers, International Journal of Pure and Applied Mathematics, 90 (2014), 519-559.
doi: 10.12732/ijpam.v90i4.13. |
[17] |
H. Takagi,
Waiting time in the M/M/$ m $ FCFS nonpreemptive priority queue with impatient customers, International Journal of Pure and Applied Mathematics, 97 (2014), 311-344.
doi: 10.12732/ijpam.v97i3.5. |
[18] |
H. Takagi,
Waiting time in the M/M/$ m $ LCFS nonpreemptive priority queue with impatient customers, Annals of Operations Research, 247 (2016), 257-289.
doi: 10.1007/s10479-015-1876-7. |
[19] |
H. Takagi, Times to service completion and abandonment in the M/M/$ m$ preemptive LCFS queue with impatient customers QTNA'16, 2016, Wellington, New Zealand, ACM ISBN 978-1-4503-4842-3/16/12.
doi: 10.1145/3016032.3016036. |
[20] |
H. M. Taylor and S. Karlin,
An Introduction to Stochastic Modeling, 3$ ^{rd}$ edition, Academic Press, San Diego, California, 1998. |
[21] |
W. Whitt,
Engineering solution of a basic call-center model, Management Science, 51 (2005), 221-235.
doi: 10.1287/mnsc.1040.0302. |
[22] |
R. W. Wolff,
Stochastic Modeling and the Theory of Queues, Prentice Hall, Englewood Cliffs, New Jersey, 1989. |
show all references
References:
[1] |
R. B. Cooper,
Introduction to Queueing Theory, 2$ ^{nd}$ edition, Elsevier North Holland, New York, 1981. |
[2] |
N. Gautam, Analysis of Queues: Methods and Applications, CRC Press, Boca Raton, Florida, 2012. Google Scholar |
[3] |
B. V. Gnedenko and I. N. Kovalenko, Introduction to Queueing Theory, 2$ ^{nd}$ edition, revised and supplemented. Translated by Samuel Kotz, Springer-Verlag, New York, 1994. Google Scholar |
[4] |
F. Iravani and B. Balcio$ {\tilde {\rm g}}$lu,
On priority queues with impatient customers, Queueing Systems, 58 (2008), 239-260.
doi: 10.1007/s11134-008-9069-6. |
[5] |
D. L. Jagerman,
Difference Equations with Applications to Queues, Marcel Dekker, New York, 2000. |
[6] |
O. Jouini,
Analysis of a last come first served queueing system with customer abandonment, Computers & Operations Research, 39 (2012), 3040-3045.
doi: 10.1016/j.cor.2012.03.009. |
[7] |
O. Jouini and A. Roubos, On multiple priority multi-server queues with impatience, Journal of the Operational Research Society, 65 (2014), 616-632. Google Scholar |
[8] |
G. P. Klimow,
Bedienungsprozesse, Birkhäuser, Basel, 1979. |
[9] |
V. G. Kulkarni,
Modeling and Analysis of Stochastic Systems, Chapman & Hall, Boca Raton, Florida, 1995. |
[10] |
A. Mandelbaum and S. Zeltyn, Service engineering in action: The Palm/Erlang-A queue, with applications to call centers, in Advances in Services Innovations (eds. D. Spath and K. -P. Fähnrich), Springer, (2007), 17-45 Google Scholar |
[11] |
A. Myskja and O. Espvik (editors), Tore Olaus Engset, 1865-1943, The Man Behind the Formula, Tapir Academic Press, Trondheim, Norway, 2002 Google Scholar |
[12] |
C. Palm, Etude des délais d'attente, Ericsson Technics, 5 (1937), 39-56, cited in [14]. Google Scholar |
[13] |
C. Palm, Research on telephone traffic carried by full availability groups, Tele, 1 (1957), 1-107 (English translation of results first published in 1946 in Swedish in the same journal, then entitled Tekniska Meddelanden från Kungliga Telegrafstyrelsen.), cited in [10] and [14]. Google Scholar |
[14] |
J. Riordan,
Stochastic Service Systems, John Wiley & Sons, New York, 1962. |
[15] |
S. Subba Rao,
Queuing with balking and reneging in M/G/1 systems, Metrika, (1967/68), 173-188.
doi: 10.1007/BF02613493. |
[16] |
H. Takagi,
Waiting time in the M/M/$ m / ( m + c ) $ queue with impatient customers, International Journal of Pure and Applied Mathematics, 90 (2014), 519-559.
doi: 10.12732/ijpam.v90i4.13. |
[17] |
H. Takagi,
Waiting time in the M/M/$ m $ FCFS nonpreemptive priority queue with impatient customers, International Journal of Pure and Applied Mathematics, 97 (2014), 311-344.
doi: 10.12732/ijpam.v97i3.5. |
[18] |
H. Takagi,
Waiting time in the M/M/$ m $ LCFS nonpreemptive priority queue with impatient customers, Annals of Operations Research, 247 (2016), 257-289.
doi: 10.1007/s10479-015-1876-7. |
[19] |
H. Takagi, Times to service completion and abandonment in the M/M/$ m$ preemptive LCFS queue with impatient customers QTNA'16, 2016, Wellington, New Zealand, ACM ISBN 978-1-4503-4842-3/16/12.
doi: 10.1145/3016032.3016036. |
[20] |
H. M. Taylor and S. Karlin,
An Introduction to Stochastic Modeling, 3$ ^{rd}$ edition, Academic Press, San Diego, California, 1998. |
[21] |
W. Whitt,
Engineering solution of a basic call-center model, Management Science, 51 (2005), 221-235.
doi: 10.1287/mnsc.1040.0302. |
[22] |
R. W. Wolff,
Stochastic Modeling and the Theory of Queues, Prentice Hall, Englewood Cliffs, New Jersey, 1989. |










Parameter setting: |
|||||||||
0 | 0.48730 | 0.51270 | 0.74365 | 0.19074 | 0.55291 | 0.93439 | 0.14509 | 0.78930 | 1.61923 |
1 | 0.43604 | 0.56396 | 0.71802 | 0.16108 | 0.55693 | 0.87910 | 0.12145 | 0.75765 | 1.50083 |
2 | 0.37451 | 0.62549 | 0.68726 | 0.13062 | 0.55663 | 0.81788 | 0.09902 | 0.71886 | 1.37535 |
3 | 0.29966 | 0.70034 | 0.64983 | 0.10014 | 0.54969 | 0.74997 | 0.07831 | 0.67166 | 1.24242 |
4 | 0.20717 | 0.79283 | 0.60358 | 0.07105 | 0.53254 | 0.67463 | 0.05990 | 0.61473 | 1.10179 |
5 | 0.09089 | 0.90911 | 0.54544 | 0.04579 | 0.49965 | 0.59124 | 0.04432 | 0.54692 | 0.95333 |
6 | 0.05093 | 0.94907 | 0.52546 | 0.03324 | 0.49223 | 0.55870 | 0.03623 | 0.52247 | 0.89240 |
7 | 0.03314 | 0.96686 | 0.51657 | 0.02601 | 0.49056 | 0.54257 | 0.03117 | 0.51141 | 0.86061 |
8 | 0.02376 | 0.97624 | 0.51188 | 0.02138 | 0.49050 | 0.53326 | 0.02764 | 0.50562 | 0.84136 |
9 | 0.01819 | 0.98181 | 0.50910 | 0.01820 | 0.49090 | 0.52729 | 0.02502 | 0.50227 | 0.82847 |
10 | 0.01459 | 0.98541 | 0.50730 | 0.01588 | 0.49142 | 0.52317 | 0.02297 | 0.50020 | 0.81921 |
11 | 0.01211 | 0.98789 | 0.50605 | 0.01411 | 0.49194 | 0.52017 | 0.02132 | 0.49885 | 0.81223 |
12 | 0.01031 | 0.98969 | 0.50516 | 0.01273 | 0.49243 | 0.51788 | 0.01995 | 0.49794 | 0.80675 |
13 | 0.00896 | 0.99104 | 0.50448 | 0.01161 | 0.49287 | 0.51609 | 0.01879 | 0.49730 | 0.80232 |
14 | 0.00790 | 0.99210 | 0.50395 | 0.01069 | 0.49326 | 0.51464 | 0.01780 | 0.49684 | 0.79865 |
15 | 0.00707 | 0.99293 | 0.50353 | 0.00991 | 0.49362 | 0.51345 | 0.01693 | 0.49652 | 0.79556 |
16 | 0.00638 | 0.99362 | 0.50319 | 0.00925 | 0.49394 | 0.51245 | 0.01617 | 0.49628 | 0.79292 |
17 | 0.00582 | 0.99418 | 0.50291 | 0.00868 | 0.49423 | 0.51159 | 0.01549 | 0.49611 | 0.79062 |
18 | 0.00534 | 0.99466 | 0.50267 | 0.00819 | 0.49449 | 0.51086 | 0.01488 | 0.49598 | 0.78860 |
19 | 0.00494 | 0.99506 | 0.50247 | 0.00775 | 0.49472 | 0.51022 | 0.01433 | 0.49589 | 0.78682 |
20 | 0.00459 | 0.99541 | 0.50229 | 0.00736 | 0.49493 | 0.50965 | 0.01383 | 0.49583 | 0.78522 |
Parameter setting: |
|||||||||
0 | 0.48730 | 0.51270 | 0.74365 | 0.19074 | 0.55291 | 0.93439 | 0.14509 | 0.78930 | 1.61923 |
1 | 0.43604 | 0.56396 | 0.71802 | 0.16108 | 0.55693 | 0.87910 | 0.12145 | 0.75765 | 1.50083 |
2 | 0.37451 | 0.62549 | 0.68726 | 0.13062 | 0.55663 | 0.81788 | 0.09902 | 0.71886 | 1.37535 |
3 | 0.29966 | 0.70034 | 0.64983 | 0.10014 | 0.54969 | 0.74997 | 0.07831 | 0.67166 | 1.24242 |
4 | 0.20717 | 0.79283 | 0.60358 | 0.07105 | 0.53254 | 0.67463 | 0.05990 | 0.61473 | 1.10179 |
5 | 0.09089 | 0.90911 | 0.54544 | 0.04579 | 0.49965 | 0.59124 | 0.04432 | 0.54692 | 0.95333 |
6 | 0.05093 | 0.94907 | 0.52546 | 0.03324 | 0.49223 | 0.55870 | 0.03623 | 0.52247 | 0.89240 |
7 | 0.03314 | 0.96686 | 0.51657 | 0.02601 | 0.49056 | 0.54257 | 0.03117 | 0.51141 | 0.86061 |
8 | 0.02376 | 0.97624 | 0.51188 | 0.02138 | 0.49050 | 0.53326 | 0.02764 | 0.50562 | 0.84136 |
9 | 0.01819 | 0.98181 | 0.50910 | 0.01820 | 0.49090 | 0.52729 | 0.02502 | 0.50227 | 0.82847 |
10 | 0.01459 | 0.98541 | 0.50730 | 0.01588 | 0.49142 | 0.52317 | 0.02297 | 0.50020 | 0.81921 |
11 | 0.01211 | 0.98789 | 0.50605 | 0.01411 | 0.49194 | 0.52017 | 0.02132 | 0.49885 | 0.81223 |
12 | 0.01031 | 0.98969 | 0.50516 | 0.01273 | 0.49243 | 0.51788 | 0.01995 | 0.49794 | 0.80675 |
13 | 0.00896 | 0.99104 | 0.50448 | 0.01161 | 0.49287 | 0.51609 | 0.01879 | 0.49730 | 0.80232 |
14 | 0.00790 | 0.99210 | 0.50395 | 0.01069 | 0.49326 | 0.51464 | 0.01780 | 0.49684 | 0.79865 |
15 | 0.00707 | 0.99293 | 0.50353 | 0.00991 | 0.49362 | 0.51345 | 0.01693 | 0.49652 | 0.79556 |
16 | 0.00638 | 0.99362 | 0.50319 | 0.00925 | 0.49394 | 0.51245 | 0.01617 | 0.49628 | 0.79292 |
17 | 0.00582 | 0.99418 | 0.50291 | 0.00868 | 0.49423 | 0.51159 | 0.01549 | 0.49611 | 0.79062 |
18 | 0.00534 | 0.99466 | 0.50267 | 0.00819 | 0.49449 | 0.51086 | 0.01488 | 0.49598 | 0.78860 |
19 | 0.00494 | 0.99506 | 0.50247 | 0.00775 | 0.49472 | 0.51022 | 0.01433 | 0.49589 | 0.78682 |
20 | 0.00459 | 0.99541 | 0.50229 | 0.00736 | 0.49493 | 0.50965 | 0.01383 | 0.49583 | 0.78522 |
(a) M/M/ |
|||||||||||
0 | 0.00068 | 0.43605 | 0.56395 | 0.43605 | 0.13781 | 0.29824 | 0.27561 | 0.07451 | 0.20111 | 0.22352 | |
1 | 0.00677 | 0.37965 | 0.62035 | 0.37965 | 0.10798 | 0.27167 | 0.21597 | 0.05440 | 0.16157 | 0.16319 | |
2 | 0.03384 | 0.31198 | 0.68802 | 0.31198 | 0.07783 | 0.23414 | 0.15567 | 0.03623 | 0.11944 | 0.10868 | |
3 | 0.11279 | 0.22964 | 0.77036 | 0.22964 | 0.04839 | 0.18125 | 0.09678 | 0.02065 | 0.07613 | 0.06195 | |
4 | 0.28198 | 0.12790 | 0.87210 | 0.12790 | 0.02143 | 0.10467 | 0.04286 | 0.00836 | 0.03450 | 0.02509 | |
5 | 0.56395 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
(b) M/M/ |
|||||||||||
0 | 0.04665 | 1.11808 | 3.09648 | 16.5361 | 11 | 0.00441 | 5.07289 | 36.2624 | 351.529 | ||
1 | 0.13994 | 1.15743 | 3.38325 | 18.9517 | 12 | 0.00264 | 5.57289 | 42.5852 | 432.445 | ||
2 | 0.20991 | 1.22303 | 3.83497 | 22.6908 | 13 | 0.00159 | 6.07289 | 49.4081 | 524.721 | ||
3 | 0.20991 | 1.34111 | 4.59908 | 28.9123 | 14 | 0.00095 | 6.57289 | 56.7310 | 629.106 | ||
4 | 0.15743 | 1.57289 | 6.00215 | 40.1720 | 15 | 0.00057 | 7.07289 | 64.5539 | 746.350 | ||
5 | 0.09446 | 2.07289 | 8.82504 | 62.5736 | 16 | 0.00034 | 7.57289 | 72.8768 | 877.203 | ||
6 | 0.05668 | 2.57289 | 12.1479 | 91.0845 | 17 | 0.00021 | 8.07289 | 81.6997 | 1022.41 | ||
7 | 0.03401 | 3.07289 | 15.9708 | 126.455 | 18 | 0.00012 | 8.57289 | 91.0226 | 1182.73 | ||
8 | 0.02040 | 3.57289 | 20.2937 | 169.434 | 19 | 0.00007 | 9.07289 | 100.845 | 1358.91 | ||
9 | 0.01224 | 4.07289 | 25.1166 | 220.773 | 20 | 0.00004 | 9.57289 | 111.168 | 1151.69 | ||
10 | 0.00735 | 4.57289 | 30.4395 | 281.221 |
(a) M/M/ |
|||||||||||
0 | 0.00068 | 0.43605 | 0.56395 | 0.43605 | 0.13781 | 0.29824 | 0.27561 | 0.07451 | 0.20111 | 0.22352 | |
1 | 0.00677 | 0.37965 | 0.62035 | 0.37965 | 0.10798 | 0.27167 | 0.21597 | 0.05440 | 0.16157 | 0.16319 | |
2 | 0.03384 | 0.31198 | 0.68802 | 0.31198 | 0.07783 | 0.23414 | 0.15567 | 0.03623 | 0.11944 | 0.10868 | |
3 | 0.11279 | 0.22964 | 0.77036 | 0.22964 | 0.04839 | 0.18125 | 0.09678 | 0.02065 | 0.07613 | 0.06195 | |
4 | 0.28198 | 0.12790 | 0.87210 | 0.12790 | 0.02143 | 0.10467 | 0.04286 | 0.00836 | 0.03450 | 0.02509 | |
5 | 0.56395 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
(b) M/M/ |
|||||||||||
0 | 0.04665 | 1.11808 | 3.09648 | 16.5361 | 11 | 0.00441 | 5.07289 | 36.2624 | 351.529 | ||
1 | 0.13994 | 1.15743 | 3.38325 | 18.9517 | 12 | 0.00264 | 5.57289 | 42.5852 | 432.445 | ||
2 | 0.20991 | 1.22303 | 3.83497 | 22.6908 | 13 | 0.00159 | 6.07289 | 49.4081 | 524.721 | ||
3 | 0.20991 | 1.34111 | 4.59908 | 28.9123 | 14 | 0.00095 | 6.57289 | 56.7310 | 629.106 | ||
4 | 0.15743 | 1.57289 | 6.00215 | 40.1720 | 15 | 0.00057 | 7.07289 | 64.5539 | 746.350 | ||
5 | 0.09446 | 2.07289 | 8.82504 | 62.5736 | 16 | 0.00034 | 7.57289 | 72.8768 | 877.203 | ||
6 | 0.05668 | 2.57289 | 12.1479 | 91.0845 | 17 | 0.00021 | 8.07289 | 81.6997 | 1022.41 | ||
7 | 0.03401 | 3.07289 | 15.9708 | 126.455 | 18 | 0.00012 | 8.57289 | 91.0226 | 1182.73 | ||
8 | 0.02040 | 3.57289 | 20.2937 | 169.434 | 19 | 0.00007 | 9.07289 | 100.845 | 1358.91 | ||
9 | 0.01224 | 4.07289 | 25.1166 | 220.773 | 20 | 0.00004 | 9.57289 | 111.168 | 1151.69 | ||
10 | 0.00735 | 4.57289 | 30.4395 | 281.221 |
[1] |
Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565 |
[2] |
Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013 |
[3] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[4] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[5] |
Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931 |
[6] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[7] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[8] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[9] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[10] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[11] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[12] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[13] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]