\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Delay characteristics in place-reservation queues with class-dependent service times

  • * Corresponding author: Sabine Wittevrongel

    * Corresponding author: Sabine Wittevrongel 
Abstract Full Text(HTML) Figure(12) Related Papers Cited by
  • This paper considers a discrete-time single-server infinite-capacity queue with two classes of packet arrivals, either delay-sensitive (class 1) or delay-tolerant (class 2), and a reservation-based priority scheduling mechanism. The objective is to provide a better quality of service to delay-sensitive packets at the cost of allowing higher delays for the best-effort packets. To this end, the scheduling mechanism makes use of an in-queue reserved place intended for future class-1 packet arrivals. A class-1 arrival takes the place of the reservation in the queue, after which a new reservation is created at the tail of the queue. Class-2 arrivals always take place at the tail of the queue. We study the delay characteristics for both packet classes under the assumption of a general independent packet arrival process. The service times of the packets are independent and have a general distribution that depends on the class of the packet. Closed-form expressions are obtained for the probability generating functions of the per-class delays. From this, moments and tail probabilities of the packet delays of both classes are derived. The results are illustrated by some numerical examples.

    Mathematics Subject Classification: Primary: 60K25, 90B22; Secondary: 68M20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Insertion of 4 packets arriving during the same slot under reservation-based scheduling

    Figure 2.  Sample path of the queueing model

    Figure 3.  An $M\times M$ switch with output buffers

    Figure 4.  Mean packet delays versus load $\rho$, for $M = 16$, $\mu_1 = \mu_2 = 3$ and various values of $\alpha$

    Figure 5.  Mean packet delays versus load $\rho$, for $M = 16$, $\mu_1 = 3$, $\mu_2 = 20$ and various values of $\alpha$

    Figure 6.  Standard deviations of packet delays versus load $\rho$, for $M = 16$, $\mu_1 = 3$, $\mu_2 = 20$ and various values of $\alpha$

    Figure 7.  Tail probabilities of the packet delays, for $M = 16$, $\rho = 0.8$, $\mu_1 = 3$, $\mu_2 = 20$ and various values of $\alpha$

    Figure 8.  Tail probabilities of the packet delays, for $M = 16$, $\rho = 0.8$, $\alpha = 0.15$, $\mu_2 = 4$ and various values of $\mu_1$

    Figure 9.  Tail probabilities of the packet delays, for $M = 16$, $\rho = 0.8$, $\alpha = 0.15$, $\mu_2 = 4$ and various values of $\mu_2$

    Figure 10.  Mean packet delays versus the standard deviation of the class-1 service times $\sigma_1$, for $M = 16$, $\rho = 0.8$, $\mu_1 = \mu_2 = 3$ and various values of $\alpha$

    Figure 11.  Mean packet delays versus the standard deviation of the class-2 service times $\sigma_2$, for $M = 16$, $\rho = 0.8$, $\mu_1 = \mu_2 = 3$ and various values of $\alpha$

    Figure 12.  Mean values and standard deviations of packet delays versus traffic mix $\alpha$, for $M = 16$, $\rho = 0.8$, and $\mu_1 = \mu_2 = 3$

  •   J. Abate  and  W. Whitt , Numerical inversion of probability generating functions, Operations Research Letters, 12 (1992) , 245-251.  doi: 10.1016/0167-6377(92)90050-D.
      H. Bruneel , Performance of discrete-time queueing systems, Computers & Operations Research, 20 (1993) , 303-320.  doi: 10.1016/0305-0548(93)90006-5.
      H. Bruneel and B. G. Kim, Discrete-Time Models for Communication Systems Including ATM, Kluwer Academic Publishers, Boston, 1993. doi: 10.1007/978-1-4615-3130-2.
      S. De Clercq , B. Steyaert  and  H. Bruneel , Delay analysis of a discrete-time multiclass slot-bound priority system, 4OR -A Quarterly Journal of Operations Research, 10 (2012) , 67-79.  doi: 10.1007/s10288-011-0183-7.
      S. De Clercq , B. Steyaert , S. Wittevrongel  and  H. Bruneel , Analysis of a discrete-time queue with time-limited overtake priority, Annals of Operations Research, 238 (2016) , 69-97.  doi: 10.1007/s10479-015-2000-8.
      S. De Vuyst , S. Wittevrongel  and  H. Bruneel , Place reservation: Delay analysis of a novel scheduling mechanism, Computers & Operations Research, 35 (2008) , 2447-2462. 
      B. Feyaerts , S. De Vuyst , H. Bruneel  and  S. Wittevrongel , Delay analysis of a discrete-time GI-GI-1 queue with reservation-based priority scheduling, Stochastic Models, 32 (2016) , 179-205.  doi: 10.1080/15326349.2015.1091739.
      B. Feyaerts, S. De Vuyst, S. Wittevrongel and H. Bruneel, Analysis of a discrete-time priority queue with place reservations and geometric service times, in Proceedings of the Summer Computer Simulation Conference, SCSC 2008/DASD (Edinburgh, June 16-18,2008), SCS, (2008), 140-147.
      T. Maertens , J. Walraevens  and  H. Bruneel , Performance comparison of several priority schemes with priority jumps, Annals of Operations Research, 162 (2008) , 109-125.  doi: 10.1007/s10479-008-0314-5.
      A. Melikov , L. Ponomarenko  and  C. Kim , Approximate method for analysis of queuing models with jump priorities, Automation and Remote Control, 74 (2013) , 62-75.  doi: 10.1134/S0005117913010062.
      S. Ndreca  and  B. Scoppola , Discrete time GI/Geom/1 queueing system with priority, European Journal of Operational Research, 189 (2008) , 1403-1408.  doi: 10.1016/j.ejor.2007.02.056.
      H. Takagi, Queueing Analysis: A Foundation of Performance Evaluation, Volume 3: Discrete-Time Systems, North-Holland, Amsterdam, 1993.
      C.-K. Tham , Q. Yao  and  Y. Jiang , A multi-class probabilistic priority scheduling discipline for differentiated services networks, Computer Communications, 25 (2002) , 1487-1496.  doi: 10.1016/S0140-3664(02)00035-X.
      J. Walraevens , B. Steyaert  and  H. Bruneel , Delay characteristics in discrete-time GI-G-1 queues with non-preemptive priority queueing discipline, Performance Evaluation, 50 (2002) , 53-75.  doi: 10.1016/S0166-5316(02)00082-2.
      S. Wittevrongel , B. Feyaerts , H. Bruneel  and  S. De Vuyst , Delay analysis of a queue with reservation-based scheduling and class-dependent service times, Stoch. Models, 32 (2016) , 179-205.  doi: 10.1080/15326349.2015.1091739.
  • 加载中

Figures(12)

SHARE

Article Metrics

HTML views(2445) PDF downloads(340) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return