
-
Previous Article
A novel modeling and smoothing technique in global optimization
- JIMO Home
- This Issue
-
Next Article
Optimal stopping investment with non-smooth utility over an infinite time horizon
Optimal design of finite precision and infinite precision non-uniform cosine modulated filter bank
1. | School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, Australia |
2. | School of Information Engineering, Guangdong University of Technology, China |
This paper investigates the design of non-uniform cosine modulated filter bank (CMFB) with both finite precision coefficients and infinite precision coefficients. The finite precision filter bank has been designed to reduce the computational complexity related to the multiplication operations in the filter bank. Here, non-uniform filter bank (NUFB) is obtained by merging the appropriate filters of an uniform filter bank. An efficient optimization approach is developed for the design of non-uniform CMFB with infinite precision coefficients. A new procedure based on the discrete filled function is then developed to design the filter bank prototype filter with finite precision coefficients. Design examples demonstrate that the designed filter banks with both infinite precision coefficients and finite precision coefficients have low distortion and better performance when compared with other existing methods.
References:
[1] |
F. Argenti, B. Brogelli and E. Del Re,
Design of pseudo-QMF banks with rational sampling factors using several prototype filters, IEEE Trans. Signal Process., 46 (1998), 1709-1715.
doi: 10.1109/78.678502. |
[2] |
H. H. Dam and K. L. Teo,
Variable fractional delay filter design with discrete coefficients, Management, 12 (2016), 819-831.
|
[3] |
H. H. Dam,
Design of allpass variable fractional delay filter with powers-of-two coefficients, IEEE Trans. Signal Process., 59 (2011), 6240-6244.
doi: 10.1109/TSP.2011.2165951. |
[4] |
H. H. Dam,
Optimal design of oversampled modulated filter bank, IEEE Signal Processing Letters, 24 (2017), 673-677.
doi: 10.1109/LSP.2017.2685641. |
[5] |
H. H. Dam and S. Nordholm,
Accelerated gradient with optimal step size for second-order blind signal separation, Multidimensional Systems and Signal Processing, (2017), 1-17.
doi: 10.1007/s11045-017-0478-8. |
[6] |
H. H. Dam, D. Rimantho and S. Nordholm,
Second-order blind signal separation with optimal step size, Speech Communication, 55 (2013), 535-543.
doi: 10.1016/j.specom.2012.10.003. |
[7] |
H. H. Dam, S. Nordholm and A. Cantoni,
Uniform FIR filterbank optimization with group delay specifications, IEEE Trans. Signal Process., 53 (2005), 4249-4260.
doi: 10.1109/TSP.2005.857008. |
[8] |
H. H. Dam, S. Nordholm, A. Cantoni and J. M. de Haan,
Iterative method for the design of DFT filter bank, IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 51 (2004), 581-586.
doi: 10.1109/TCSII.2004.836041. |
[9] |
Z. G. Feng and K. L. Teo,
A discrete filled function method for the design og FIR filters with signed-powers-of-two coefficients, IEEE Trans. Signal Process., 56 (2008), 134-139.
doi: 10.1109/TSP.2007.901164. |
[10] |
J. D. Griesbach, T. Bose and D. M. Etter,
Non-uniform filterbank bandwidth allocation for system modeling subband adaptive filters, IEEE International Conference on Acoustics, Speech, and Signal Processing, (1999), 1473-1476.
doi: 10.1109/ICASSP.1999.756261. |
[11] |
S. Kalathil and E. Elias,
Efficient design of non-uniform cosine modulated filter banks for digital hearing aids, International Journal of Electronics and Communications, 69 (2015), 1314-1320.
doi: 10.1016/j.aeue.2015.05.015. |
[12] |
S. Kalathil and E. Elias,
Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space, Journal of Advance Research, 6 (2015), 839-849.
doi: 10.1016/j.jare.2014.06.008. |
[13] |
A. Kumar, G. K. Singh and S. Anurag,
An optimized cosine-modulated nonuniform filter bank design for subband coding of ECG signal, Journal of King Saud University -Engineering Science, 27 (2015), 158-169.
doi: 10.1016/j.jksues.2013.10.001. |
[14] |
J. J. Lee and B. Gi Lee, A design of nonuniform cosine modulated filter banks, IEEE Trans. Circuits Syst. Ⅱ: Analog Digit. Signal Process., 42 (1995), 732-737. Google Scholar |
[15] |
B. Li, H. H. Dam, A. Cantoni and K. L. Teo,
A global optimal zero-forcing beamformer design with signed power-of-two coefficients, J. Ind. Manag. Optim., 12 (2016), 595-607.
|
[16] |
D. Li, Y. C. Lim, Y. Lian and J. Song, Polynomial-time algorithm for designing FIR filters with power-of-two coefficients, IEEE Trans. Signal Process., 50 (2002), 1935-1941. Google Scholar |
[17] |
B. Li, L. Ge and J. Zheng, An efficient channelizer based on nonuniform filter banks in 8th International Conference on Signal Processing, (2006).
doi: 10.1109/ICOSP.2006.345902. |
[18] |
H. Lin, Y. Wang and L. Fan,
A filled function method with one parameter for unconstrained global optimization, Applied Mathematics and Computation, 218 (2011), 3776-3785.
doi: 10.1016/j.amc.2011.09.022. |
[19] |
B. W. K. Ling, C. Y. F. Ho, K. L. Teo, W. C. Siu, J. Cao and Q. Dai,
Optimal design of cosine modulated nonuniform linear phase FIR filter bank via both stretching and shifting frequency response of single prototype filter, IEEE Trans. Signal Process., 62 (2014), 2517-2530.
doi: 10.1109/TSP.2014.2312326. |
[20] |
W. K. Ling and K. S. Tam, Representation of perfect reconstruction octave decomposition filter banks with set of decimators 2, 4, 4 via tree structure, IEEE Signal Processing Letters, 10 (2003), 184-186. Google Scholar |
[21] |
R. C. Nongpiur and D. J. Shpak,
Maximizing the signal-to-alias ratio in non-uniform filter banks for acoustic echo cancelation, IEEE Trans Circ-I, 59 (2012), 2315-2325.
doi: 10.1109/TCSI.2012.2185333. |
[22] |
J. Ogale and S. Ashok,
Cosine modulated non-uniform filter banks, Journal of Signal and Information Processing, 2 (2011), 178-183.
doi: 10.4236/jsip.2011.23024. |
[23] |
P. P. Vaidyanathan, Multirate Systems and Filter Banks, 1993. Google Scholar |
[24] |
C. Z. Wu, K. L. Teo, V. Rehbock and H. H. Dam,
Global optimum design of uniform FIR filter bank with magnitude constraints, IEEE Trans. Signal Process., 56 (2008), 5478-5486.
doi: 10.1109/TSP.2008.927803. |
[25] |
C. Yu, K. L. Teo and H. H. Dam, Design of allpass variable fractional delay filter with signed powers-of-two coefficients, Signal Processing, 95 (2014), 32-42. Google Scholar |
show all references
References:
[1] |
F. Argenti, B. Brogelli and E. Del Re,
Design of pseudo-QMF banks with rational sampling factors using several prototype filters, IEEE Trans. Signal Process., 46 (1998), 1709-1715.
doi: 10.1109/78.678502. |
[2] |
H. H. Dam and K. L. Teo,
Variable fractional delay filter design with discrete coefficients, Management, 12 (2016), 819-831.
|
[3] |
H. H. Dam,
Design of allpass variable fractional delay filter with powers-of-two coefficients, IEEE Trans. Signal Process., 59 (2011), 6240-6244.
doi: 10.1109/TSP.2011.2165951. |
[4] |
H. H. Dam,
Optimal design of oversampled modulated filter bank, IEEE Signal Processing Letters, 24 (2017), 673-677.
doi: 10.1109/LSP.2017.2685641. |
[5] |
H. H. Dam and S. Nordholm,
Accelerated gradient with optimal step size for second-order blind signal separation, Multidimensional Systems and Signal Processing, (2017), 1-17.
doi: 10.1007/s11045-017-0478-8. |
[6] |
H. H. Dam, D. Rimantho and S. Nordholm,
Second-order blind signal separation with optimal step size, Speech Communication, 55 (2013), 535-543.
doi: 10.1016/j.specom.2012.10.003. |
[7] |
H. H. Dam, S. Nordholm and A. Cantoni,
Uniform FIR filterbank optimization with group delay specifications, IEEE Trans. Signal Process., 53 (2005), 4249-4260.
doi: 10.1109/TSP.2005.857008. |
[8] |
H. H. Dam, S. Nordholm, A. Cantoni and J. M. de Haan,
Iterative method for the design of DFT filter bank, IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 51 (2004), 581-586.
doi: 10.1109/TCSII.2004.836041. |
[9] |
Z. G. Feng and K. L. Teo,
A discrete filled function method for the design og FIR filters with signed-powers-of-two coefficients, IEEE Trans. Signal Process., 56 (2008), 134-139.
doi: 10.1109/TSP.2007.901164. |
[10] |
J. D. Griesbach, T. Bose and D. M. Etter,
Non-uniform filterbank bandwidth allocation for system modeling subband adaptive filters, IEEE International Conference on Acoustics, Speech, and Signal Processing, (1999), 1473-1476.
doi: 10.1109/ICASSP.1999.756261. |
[11] |
S. Kalathil and E. Elias,
Efficient design of non-uniform cosine modulated filter banks for digital hearing aids, International Journal of Electronics and Communications, 69 (2015), 1314-1320.
doi: 10.1016/j.aeue.2015.05.015. |
[12] |
S. Kalathil and E. Elias,
Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space, Journal of Advance Research, 6 (2015), 839-849.
doi: 10.1016/j.jare.2014.06.008. |
[13] |
A. Kumar, G. K. Singh and S. Anurag,
An optimized cosine-modulated nonuniform filter bank design for subband coding of ECG signal, Journal of King Saud University -Engineering Science, 27 (2015), 158-169.
doi: 10.1016/j.jksues.2013.10.001. |
[14] |
J. J. Lee and B. Gi Lee, A design of nonuniform cosine modulated filter banks, IEEE Trans. Circuits Syst. Ⅱ: Analog Digit. Signal Process., 42 (1995), 732-737. Google Scholar |
[15] |
B. Li, H. H. Dam, A. Cantoni and K. L. Teo,
A global optimal zero-forcing beamformer design with signed power-of-two coefficients, J. Ind. Manag. Optim., 12 (2016), 595-607.
|
[16] |
D. Li, Y. C. Lim, Y. Lian and J. Song, Polynomial-time algorithm for designing FIR filters with power-of-two coefficients, IEEE Trans. Signal Process., 50 (2002), 1935-1941. Google Scholar |
[17] |
B. Li, L. Ge and J. Zheng, An efficient channelizer based on nonuniform filter banks in 8th International Conference on Signal Processing, (2006).
doi: 10.1109/ICOSP.2006.345902. |
[18] |
H. Lin, Y. Wang and L. Fan,
A filled function method with one parameter for unconstrained global optimization, Applied Mathematics and Computation, 218 (2011), 3776-3785.
doi: 10.1016/j.amc.2011.09.022. |
[19] |
B. W. K. Ling, C. Y. F. Ho, K. L. Teo, W. C. Siu, J. Cao and Q. Dai,
Optimal design of cosine modulated nonuniform linear phase FIR filter bank via both stretching and shifting frequency response of single prototype filter, IEEE Trans. Signal Process., 62 (2014), 2517-2530.
doi: 10.1109/TSP.2014.2312326. |
[20] |
W. K. Ling and K. S. Tam, Representation of perfect reconstruction octave decomposition filter banks with set of decimators 2, 4, 4 via tree structure, IEEE Signal Processing Letters, 10 (2003), 184-186. Google Scholar |
[21] |
R. C. Nongpiur and D. J. Shpak,
Maximizing the signal-to-alias ratio in non-uniform filter banks for acoustic echo cancelation, IEEE Trans Circ-I, 59 (2012), 2315-2325.
doi: 10.1109/TCSI.2012.2185333. |
[22] |
J. Ogale and S. Ashok,
Cosine modulated non-uniform filter banks, Journal of Signal and Information Processing, 2 (2011), 178-183.
doi: 10.4236/jsip.2011.23024. |
[23] |
P. P. Vaidyanathan, Multirate Systems and Filter Banks, 1993. Google Scholar |
[24] |
C. Z. Wu, K. L. Teo, V. Rehbock and H. H. Dam,
Global optimum design of uniform FIR filter bank with magnitude constraints, IEEE Trans. Signal Process., 56 (2008), 5478-5486.
doi: 10.1109/TSP.2008.927803. |
[25] |
C. Yu, K. L. Teo and H. H. Dam, Design of allpass variable fractional delay filter with signed powers-of-two coefficients, Signal Processing, 95 (2014), 32-42. Google Scholar |










Methods | Amplitude distortion | Stopband attenuation |
Weighted Chebyshev in [12] | 0.0042 | -60.65 dB |
WCLS approach in [12] | 0.0029 | -61.49 dB |
Window method [13] with As=65 | 0.0067 | -69.85 dB |
Window method [13] with As=65 as the initial to (12) with a constraint of -65 dB for prototype filter stopband | 0.0014 | -65.00 dB |
Proposed method with As=65 and a constraint of -65 dB for prototype filter stopband | 0.00048 | -78.23 dB |
Methods | Amplitude distortion | Stopband attenuation |
Weighted Chebyshev in [12] | 0.0042 | -60.65 dB |
WCLS approach in [12] | 0.0029 | -61.49 dB |
Window method [13] with As=65 | 0.0067 | -69.85 dB |
Window method [13] with As=65 as the initial to (12) with a constraint of -65 dB for prototype filter stopband | 0.0014 | -65.00 dB |
Proposed method with As=65 and a constraint of -65 dB for prototype filter stopband | 0.00048 | -78.23 dB |
N | Methods | Amplitude dist. | Stopband att. |
154 | Weighted Chebyshev [12] | 0.0039 | -60.65 dB |
WCLS [12] | 0.0028 | -61.49 dB | |
Optimal solution with As=65 | 0.00061 | -71.44 dB | |
198 | Method in [13] as quoted in [12] | 0.0025 | -79.65 dB |
Method in [13] with As=80 | 0.0021 | -89.95 dB | |
Proposed method with restriction of -85 dB for prototype filter stopband | 0.0011 | -85.00 dB | |
Proposed method with restriction of -90 dB for prototype filter stopband | 0.0012 | -90.01 dB |
N | Methods | Amplitude dist. | Stopband att. |
154 | Weighted Chebyshev [12] | 0.0039 | -60.65 dB |
WCLS [12] | 0.0028 | -61.49 dB | |
Optimal solution with As=65 | 0.00061 | -71.44 dB | |
198 | Method in [13] as quoted in [12] | 0.0025 | -79.65 dB |
Method in [13] with As=80 | 0.0021 | -89.95 dB | |
Proposed method with restriction of -85 dB for prototype filter stopband | 0.0011 | -85.00 dB | |
Proposed method with restriction of -90 dB for prototype filter stopband | 0.0012 | -90.01 dB |
SPT | Methods | Amplitude dist. | Stopband att. | Total adders |
Inf. precision sol. As=90 | 0.0017 | -90.00 dB | - | |
Q=250 | Quantized solution | 0.0018 | -81.57 dB | 250 |
Local optimal | 0.000696 | -72.63 dB | 250 | |
Optimal solution | 0.000318 | -66.52 dB | 250 | |
Q=260 | Quantized solution | 0.0019 | -81.63 dB | 256 |
Local optimal | 0.000684 | -71.56 dB | 263 | |
Optimal solution | 0.000312 | -67.84 dB | 268 | |
Method in [12] using GA | 0.0058 | -56.25 dB | 266 |
SPT | Methods | Amplitude dist. | Stopband att. | Total adders |
Inf. precision sol. As=90 | 0.0017 | -90.00 dB | - | |
Q=250 | Quantized solution | 0.0018 | -81.57 dB | 250 |
Local optimal | 0.000696 | -72.63 dB | 250 | |
Optimal solution | 0.000318 | -66.52 dB | 250 | |
Q=260 | Quantized solution | 0.0019 | -81.63 dB | 256 |
Local optimal | 0.000684 | -71.56 dB | 263 | |
Optimal solution | 0.000312 | -67.84 dB | 268 | |
Method in [12] using GA | 0.0058 | -56.25 dB | 266 |
SPT | Methods | Amplitude dist. | Stopband att. | Total adders |
Inf. precision sol. | 0.0012 | -90.00 dB | - | |
Q=290 | Quantized solution | 0.0013 | -77.28 dB | 290 |
Local optimal | 0.000715 | -75.12 dB | 289 | |
Optimal solution | 0.000498 | -75.30 dB | 290 | |
Q=300 | Quantized solution | 0.0014 | -77.14 dB | 300 |
Local optimal | 0.00078 | -76.16 dB | 300 | |
Optimal solution | 0.000505 | -75.10 dB | 300 | |
Method in [12] using GA | 0.003 | -62.30 dB | 315 |
SPT | Methods | Amplitude dist. | Stopband att. | Total adders |
Inf. precision sol. | 0.0012 | -90.00 dB | - | |
Q=290 | Quantized solution | 0.0013 | -77.28 dB | 290 |
Local optimal | 0.000715 | -75.12 dB | 289 | |
Optimal solution | 0.000498 | -75.30 dB | 290 | |
Q=300 | Quantized solution | 0.0014 | -77.14 dB | 300 |
Local optimal | 0.00078 | -76.16 dB | 300 | |
Optimal solution | 0.000505 | -75.10 dB | 300 | |
Method in [12] using GA | 0.003 | -62.30 dB | 315 |
[1] |
Xueling Zhou, Bingo Wing-Kuen Ling, Hai Huyen Dam, Kok-Lay Teo. Optimal design of window functions for filter window bank. Journal of Industrial & Management Optimization, 2021, 17 (3) : 1119-1145. doi: 10.3934/jimo.2020014 |
[2] |
Qing Liu, Bingo Wing-Kuen Ling, Qingyun Dai, Qing Miao, Caixia Liu. Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020055 |
[3] |
H. T. Banks, R. A. Everett, Neha Murad, R. D. White, J. E. Banks, Bodil N. Cass, Jay A. Rosenheim. Optimal design for dynamical modeling of pest populations. Mathematical Biosciences & Engineering, 2018, 15 (4) : 993-1010. doi: 10.3934/mbe.2018044 |
[4] |
Boris P. Belinskiy. Optimal design of an optical length of a rod with the given mass. Conference Publications, 2007, 2007 (Special) : 85-91. doi: 10.3934/proc.2007.2007.85 |
[5] |
K.F.C. Yiu, K.L. Mak, K. L. Teo. Airfoil design via optimal control theory. Journal of Industrial & Management Optimization, 2005, 1 (1) : 133-148. doi: 10.3934/jimo.2005.1.133 |
[6] |
Yannick Privat, Emmanuel Trélat. Optimal design of sensors for a damped wave equation. Conference Publications, 2015, 2015 (special) : 936-944. doi: 10.3934/proc.2015.0936 |
[7] |
Wei Xu, Liying Yu, Gui-Hua Lin, Zhi Guo Feng. Optimal switching signal design with a cost on switching action. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2531-2549. doi: 10.3934/jimo.2019068 |
[8] |
Bin Li, Kok Lay Teo, Cheng-Chew Lim, Guang Ren Duan. An optimal PID controller design for nonlinear constrained optimal control problems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1101-1117. doi: 10.3934/dcdsb.2011.16.1101 |
[9] |
Hai Huyen Dam, Kok Lay Teo. Variable fractional delay filter design with discrete coefficients. Journal of Industrial & Management Optimization, 2016, 12 (3) : 819-831. doi: 10.3934/jimo.2016.12.819 |
[10] |
Boris Kalinin, Victoria Sadovskaya. Normal forms for non-uniform contractions. Journal of Modern Dynamics, 2017, 11: 341-368. doi: 10.3934/jmd.2017014 |
[11] |
Yakov Pesin, Vaughn Climenhaga. Open problems in the theory of non-uniform hyperbolicity. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 589-607. doi: 10.3934/dcds.2010.27.589 |
[12] |
Hong Il Cho, Gang Uk Hwang. Optimal design and analysis of a two-hop relay network under Rayleigh fading for packet delay minimization. Journal of Industrial & Management Optimization, 2011, 7 (3) : 607-622. doi: 10.3934/jimo.2011.7.607 |
[13] |
H. T. Banks, D. Rubio, N. Saintier, M. I. Troparevsky. Optimal design for parameter estimation in EEG problems in a 3D multilayered domain. Mathematical Biosciences & Engineering, 2015, 12 (4) : 739-760. doi: 10.3934/mbe.2015.12.739 |
[14] |
Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030 |
[15] |
Faustino Maestre, Pablo Pedregal. Dynamic materials for an optimal design problem under the two-dimensional wave equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 973-990. doi: 10.3934/dcds.2009.23.973 |
[16] |
Bin Li, Hai Huyen Dam, Antonio Cantoni. A global optimal zero-forcing Beamformer design with signed power-of-two coefficients. Journal of Industrial & Management Optimization, 2016, 12 (2) : 595-607. doi: 10.3934/jimo.2016.12.595 |
[17] |
Pablo Pedregal. Fully explicit quasiconvexification of the mean-square deviation of the gradient of the state in optimal design. Electronic Research Announcements, 2001, 7: 72-78. |
[18] |
Hyeon Je Cho, Ganguk Hwang. Optimal design for dynamic spectrum access in cognitive radio networks under Rayleigh fading. Journal of Industrial & Management Optimization, 2012, 8 (4) : 821-840. doi: 10.3934/jimo.2012.8.821 |
[19] |
Santiago Campos-Barreiro, Jesús López-Fidalgo. KL-optimal experimental design for discriminating between two growth models applied to a beef farm. Mathematical Biosciences & Engineering, 2016, 13 (1) : 67-82. doi: 10.3934/mbe.2016.13.67 |
[20] |
Pablo G. Barrientos, Abbas Fakhari. Ergodicity of non-autonomous discrete systems with non-uniform expansion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1361-1382. doi: 10.3934/dcdsb.2019231 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]